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Preface

Automated Deduction in Geometry (ADG) is a series of international workshops
where active researchers exchange ideas and views, present research results and
progress, and demonstrate software tools on the intersection between geome-
try and automated deduction. This volume contains several excellent papers
(selected via peer review) based on the talks given at the ADG 2004 meeting
hosted by the University of Florida, USA, during September 16–18, 2004 . The
previous four meetings were held in Linz (2002), Zurich (2000), Beijing (1998),
and Toulouse (1996).

This volume consists of 12 papers. The paper by Laura I. Meikle and Jacques
D. Fleuriot shows how to prove the correctness of an algorithm for comput-
ing convex hulls, by using Hoare logic and Isabelle. The paper by Judit Robu,
Tetsuo Ida, Dorin Ţepeneu, Hidekazu Takahashi, and Bruno Buchberger shows
how to prove the correctness of an origami construction (heptagon), by using
the Theorema system and Gröbner bases. The paper by Xuefeng Chen, Peng Li,
Long Lin, and Dingkang Wang shows how to treat degenerate cases in geomet-
ric theorems rigorously, by introducing partitioned-parametric Gröbner bases.
The paper by Pavel Pech shows how to derive formulas for the area and ra-
dius of cyclic polygons, by using Gröbner bases. The paper by Lu Yang and
Zhenbing Zeng shows how to solve certain piano movers’ problems, by using a
specialized real quantifier elimination method (discriminant chains). The paper
by Daniel Lichtblau shows how to compute curves bounding trigonometric pla-
nar maps, by using Gröbner bases and some numerical methods. The paper by
Francisco Botana and Tomás Recio tackles several non-trivial problems (conti-
nuity, locus generation, proving, and discovering) arising in dynamic geometry,
by using Gröbner bases and other symbolic ideas and methods. The paper by
Britta Denner-Broser tackles other non-trivial problems (tracing and reachabil-
ity) arising in dynamic geometry, by introducing an alternative method (to the
standard purely algebraic method). The paper by Tielin Liang and Dongming
Wang describes the design and a prototype for an object-oriented language suit-
able for (parametrically) computing, reasoning about, and visualizing geometric
objects. The paper by Dmytro Chibisov, Ernst W. Mayr, and Sergey Pankratov
shows how to solve the motion planning problem, by using real quantifier elim-
ination and R-functions. The paper by Hongbo Li shows how to reconstruct an
nD polyhedral scene from a single 2D line drawing, by using Grassmann–Cayley
algebra and various other tools along with carefully chosen heuristics. The paper
by Gui-Fang Zhang and Xiao-Shan Gao introduces planar generalized Stewart
platforms and provides a complete characterization.

We, the editors, on behalf of the organizers, thank the speakers and the au-
thors for their excellent talks and papers. On behalf of the speakers and the
authors, we would like to thank Neil White, the General Chair of ADG 2004, for
organizing the wonderful meeting, and Manfred Minimair, the Publicity Chair,
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for making this emerging field known to wider communities. We would also like
to thank the Program Committee members (listed on the next page) for lending
all their time and expertise in ensuring the high quality of the talks and the pa-
pers. Due to all their tireless effort, the meeting was highly successful, fostering
lively and insightful discussions, which certainly inspired the papers published
in this volume. We eagerly look forward to meeting again in 2006 to share all
the new exciting progress being made!

Hoon Hong
November 2005 Dongming Wang
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Mechanical Theorem Proving in Computational
Geometry

Laura I. Meikle and Jacques D. Fleuriot

School of Informatics, University of Edinburgh, Appleton Tower, Crichton Street,
Edinburgh, EH8 9LE, UK

{lauram, jdf}@dai.ed.ac.uk

Abstract. Algorithms for solving geometric problems are widely used in
many scientific disciplines. Applications range from computer vision and
robotics to molecular biology and astrophysics. Proving the correctness
of these algorithms is vital in order to boost confidence in them. By
specifying the algorithms formally in a theorem prover such as Isabelle, it
is hoped that rigorous proofs showing their correctness will be obtained.
This paper outlines our current framework for reasoning about geometric
algorithms in Isabelle. It focuses on our case study of the convex hull
problem and shows how Hoare logic can be used to prove the correctness
of such algorithms.

1 Introduction

Computational geometry is the branch of computer science that studies algo-
rithms for solving geometric problems [14]. It has applications in, among other
fields, computer graphics, robotics, molecular biology, astrophysics and statis-
tics. Verifying that these algorithms do indeed produce the correct output is im-
portant, particularly where they are used in mission-critical instances. Formal
verification by computer would boost confidence in the algorithms and would
also provide a valuable insight into how they work. However, little has been
achieved in this field to date. Our aim is to build a framework for reasoning
about geometric algorithms in the theorem prover Isabelle.

As convex hulls are used widely in computational geometry, we look at an
algorithm for computing them in two dimensions, known as Graham’s Scan [5].
We chose to carry out our formal verification in Hoare logic [7], as it provides a
mechanisable formal system on which one can reason about imperative programs.

The next section outlines a few of the issues with geometric reasoning. After
that we introduce the theorem prover Isabelle and describe the logic and calculus
we use. Next we focus on our case study, Graham’s Scan, and in particular the
formal specification and verification. Finally, we conclude by discussing some
related work and our goals for the future.

2 All Triangles Are Equilateral

Are all triangles equilateral? The following diagram and steps of reasoning give
quite a convincing argument in favour of this statement: take any arbitrary

H. Hong and D. Wang (Eds.): ADG 2004, LNAI 3763, pp. 1–18, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 L.I. Meikle and J.D. Fleuriot

triangle �ABC and let the perpendicular bisector of BC and the internal angle
bisector of ∠A meet at some point P . If we then construct points X and Y
such that PX ⊥ AB and PY ⊥ AC, then AX = AY (by the angle-side-angle
congruence test). Using the hypotenuse-side congruence test it can be shown
that �PXB ∼= �PY C, since PX = PY , PB = PC, and ∠PXB is a right
angle. Thus, XB = Y C. Therefore, AX + XB = AY + Y C. This means AB =
AC. If we now rotate the triangle and apply the same argument on sides AC and
BC, we get the conclusion that AC = BC. Therefore, all 3 sides of the triangle
must be equal and we have proved that all triangles are equilateral.

B C

A

B M C

Y

A

X

P

What is the flaw in this proof? Our intuition tells us the proof is wrong, but
if the result were not so obviously false we might be convinced by this spurious
proof. Intuition is an important sanity check for proofs that appear logically
sound.

On the flip side, if our intuition agrees with a result it may allow us to overlook
missing steps or even flaws in proofs. Even Hilbert’s rigorous axiomatisation
of Euclidean geometry suffered from this human tendency. He argued that his
proofs were free of intuition and only required the rules of logic and formal
reasoning [6]. However, after formalising his work in Isabelle, we noted that
Hilbert’s proofs do in fact rely on intuition, through the use of diagrams and
the exclusion of certain case splits [9]. We believe that if the commonly accepted
“formalisation” of Euclidean geometry relies so unwittingly on intuition, then
our confidence in geometric algorithms is suspect.

Diagrams in particular appeal to our intuition. They give a quasi-formal re-
assurance for geometric reasoning and geometric algorithms, but they can be
misleading. Even if our hypotheses are tested through the use of diagrams, we
still do not have complete validation of our results. In fact diagrams can be a
minefield for making mistakes with undue confidence. The diagrammatic proof
that all triangles are equilateral illustrates this. Although the design and ver-
ification of geometric algorithms can be aided through diagrams, clearly more
rigorous reasoning is required.
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A common approach to verification is simulating the algorithm on certain
examples. Typically these examples are either human-selected or randomly gen-
erated. Although this method is useful, it is often subject to developer bias and
can rarely verify every possible case. We believe formal verification is the surest
way to have confidence in theorems, proofs, and algorithms. Furthermore, our
understanding of a geometric algorithm is increased by formal verification, as it
reveals inconsistencies, ambiguities and incompleteness that might otherwise go
undetected.

3 The Theorem Prover Isabelle

Isabelle is a generic theorem prover, written in ML, which can be used as a
specification and verification system [12]. There are a number of logics in which
Isabelle allows the user to encode particular problems. Of specific interest to
this work is the capacity for proofs in higher order logic (HOL). This provides a
framework powerful enough to reason about algorithms and sophisticated math-
ematical notions. Isabelle/HOL is influenced by Gordon’s HOL theorem prover
[4] which itself originates from a classic paper by Church [2]. It provides an ex-
tensive library of theories and some automatic proof methods which combine
simplification and classical reasoning. These tools greatly help mechanisation.

In particular, the development of Floyd-Hoare logic within Isabelle/HOL
is highly relevant [10]. With this logic, the formal specifications of geometric
algorithms can closely resemble their implementations.

4 Floyd-Hoare Logic

Floyd-Hoare logic is widely viewed as a way of reasoning mathematically about
imperative programs [7]. The logic can not only allow verification of programs
but can also aid their constructions from their specifications. Hence, it should
be beneficial to reasoning about geometric algorithms in a sound and rigorous
manner.

Hoare introduced a notation, called a partial correctness specification, for
specifying what a program does: {P} C {Q} is said to be true if whenever C
is executed in a state satisfying P and C terminates, then the state in which C
terminates satisfies Q. Total correctness is what ultimately needs to be proved
when verifying a program. Informally total correctness = termination + partial
correctness.

Although Hoare developed this logic as a means of reasoning about imper-
ative programs, he never fully mechanised it. This was first done by Gordon
[3] in the theorem prover HOL using an embedding of an annotated WHILE
language in higher order logic and a verification conditions generator. In Gor-
don’s approach, a program can be annotated to show the relationships between
the variables by inserting statements called assertions. These assertions express
conditions that are meant to hold at various intermediate points.
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In particular, in order to formally verify programs involving loops, the partial
correctness specification is annotated with mathematical statements known as
invariants. An invariant R must satisfy the following conditions: it must hold
initially; it must establish the result with the negated test; and the body of the
program must leave it unchanged. In Gordon’s system, a set of purely mathe-
matical statements called verification conditions (or VCs) are then generated. A
program is partially correct if the following VCs can be proven:

1. P → R
2. R ∧ Loop Test → body of loop preserves R
3. R ∧ Negated Loop Test → Q

In Isabelle, work on Hoare logic has been formalised by Nipkow [10] and will be
of interest to us. In this work, the notation for representing a theorem about an
imperative program with a while loop is of the general form:

theorem
"|- .{ P }.

variable assignments;;
WHILE Loop test
INV .{ Loop invariant }.
DO

program
OD
.{ Q }."

5 Geometric Preliminaries

Our mathematical framework for reasoning formally about geometric algorithms
builds upon a 2D real vector theory developed in Isabelle. In this theory a real
vector is a pair of real numbers, represented by (a, b). This can be interpreted
in two ways; either as the point with coordinates (a, b) or as the position vector−−−−−−−→
(0, 0)(a, b). The vector theory defines the notions of vector addition, subtraction,
dot product and scalar product. It also formalises the outer product (×), defined
in terms of the coordinates of the points A and B:

A × B ≡ Ax ∗ By - Ay ∗ Bx

Here, Ax and Ay denote the x and y-coordinates of point A respectively. Using
the outer product definition, it is possible to capture the notion of the signed
area of three points A, B and C:

area A B C ≡ (B - A) × (C - A)

Our theory uses signed areas to identify where three points lie in relation to each
other. The property of collinearity can be captured as follows:

coll A B C ≡ area A B C = 0
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Another property which can be formalised is the notion of a left turn. If a point
C lies to the left of the directed line from A to B, we write:

Left_turn A B C ≡ area A B C > 0

As shall be seen in the following sections, testing for left turns is very useful in
formalising and constructing convex hulls. Another useful property is whether
a point lies between two others. We say that B lies between A and C if the
following holds:

B isBetween A C ≡ coll A B C ∧ A 	= C ∧(
∀ D. area A C D 	= 0 −→

(0 < (area A B D / area A C D) < 1)
)

Note that we do not need to state explicitly that all the points are distinct
because the area tests would not hold simultaneously if the points were identical.

6 Defining Convex Hulls

In this section we describe what the convex hull of a set of points is and show
how we formally define it in the theorem prover Isabelle.

6.1 What Is a Convex Hull?
Point Set P

CH(P)

Many definitions exist for convex hulls. Intuitively, one
may think of a set of points P in 2D as being nails
sticking upwards from a board. Now imagine stretch-
ing a rubber band around them and letting go so its
length is minimised. The region enclosed by the rub-
ber band is known as the convex hull of P . The convex
hull of P can also be described as the smallest convex
set containing P . Despite the simplicity of this defini-
tion, it is not conducive to algorithm development as
it is not constructive. For our formal specification we
were inspired by a definition Knuth gives in his book
Axioms and Hulls [8]. This is described in the next
section.

6.2 Formal Specification of Convex Hulls

In his book, Knuth describes an orientation predicate which is equivalent to our
previously defined Left_turn. Using this, he defines a counter-clockwise system
(CC) as one which satisfies five axioms that capture the minimal properties of
the orientation predicate:

1 (cyclic symmetry). Left_turn p q r =⇒ Left_turn q r p

2 (antisymmetry). Left_turn p q r =⇒ ¬ Left_turn p r q
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3 (nondegeneracy). Left_turn p q r ∨ Left_turn p r q

4 (interiority). Left_turn t q r ∧ Left_turn p t r ∧
Left_turn p q t =⇒ Left_turn p q r

5 (transitivity). Left_turn s t p ∧ Left_turn s t q ∧
Left_turn s t r ∧ Left_turn s p q ∧
Left_turn s q r =⇒ Left_turn s p r

Although our system bears much resemblance to Knuth’s, we have not adopted
his axiomatic approach. We have followed Isabelle’s methodology of maintaining
consistency by developing new theories on top of old ones through conservative
extensions only; in our case we have built upon our theory of vectors.

One drawback of Knuth’s CC system for our purposes is that it disallows
collinear points. This leads to many elegant results in his framework, but for real-
world applications this restriction is not practical. In our formalisation, which
permits collinear points, four of Knuth’s axioms remain true and have been
proven from first principles in Isabelle. The remaining axiom, Knuth’s third, is
altered and proven in our system with the obvious modification as the following
theorem:

p 	=q ∧ p 	=r ∧ q 	=r =⇒ Left_turn p q r ∨ Left_turn p r q ∨ coll p q r

Knuth presents an alternate version of Axiom 5:

5b. Left_turn s t p ∧ Left_turn s t q ∧ Left_turn s t r ∧
Left_turn t p q ∧ Left_turn t q r =⇒ Left_turn t p r

Axiom 5b is illustrated in Figure 1 and has also been proven from first princi-
ples in Isabelle. Our mechanical proof of Axiom 5b follows the outline Knuth
sketches using three applications of Axiom 5. However, allowing collinear points
in our system dramatically increases the number of cases which needed to be
considered. In fact we had 13 additional configurations to reason about.

s

t
q

p

r

Fig. 1. Knuth’s Axiom 5b
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Knuth then describes the convex hull C of a set of points P , satisfying his
CC system, as the set of all consecutive points ts such that Left_turn t s p
holds for all p /∈ {s, t} (see Figure 2). Clearly this definition only holds when we
are traversing the hull in a counter-clockwise direction.

t s

p

Fig. 2. Formal description of convex hull

Our formalisation of a convex hull also has to allow the possibility that any
point in P could lie between two consecutive vertices. In Isabelle, we assume
that the points in C are ordered clockwise and check that C is the convex hull
of the points P using the infix predicate isConvexHull.

C isConvexHull P ≡ ¬all_collinear P ∧ distinct C ∧ set C ⊆ set P ∧
(∀ n < length P. ∀ i < (length C - 1).
(Left_turn Ci+1 Ci Pn ∨
Pn mem [Ci+1, Ci] ∨
Pn isBetween Ci+1 Ci) ∧
(Left_turn (hd C) (last C) Pn ∨
Pn mem [hd C, last C] ∨
Pn isBetween (hd C) (last C)))

Note that we have represented the point sets C and P using lists and the nth
member of a list C is denoted by Cn. The predicate isConvexHull ensures that
every point in C is distinct and belongs to the original, non-collinear point set
P . We then check that every point in P either makes a left turn with respect to
consecutive vertices in C, or is a vertex of the hull, or lies between consecutive
vertices in C. The last case in the definition simply closes the convex polygon
and ensures that the first and last vertices in C satisfy the same tests carried on
consecutive vertices.

In the next section we describe Graham’s Scan algorithm for computing
convex hulls, which was chosen for formalisation in Isabelle.
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7 Graham’s Scan Algorithm

Computing the convex hull of a set of points is a problem which has been greatly
studied. As a result there exists an abundance of algorithms. Graham’s Scan
is just one which computes 2D convex hulls. We chose to formally verify this
algorithm as it is familiar to researchers in the field and easily understood. It
is described in the following section, followed by its formalisation in Isabelle’s
Hoare logic.

7.1 How It Works

Graham’s Scan uses a method known as rotational sweep and solves the problem
by maintaining a stack C of candidate points. Each point of the input set P is
pushed once onto the stack, and the points that are not vertices of the convex
hull are eventually popped. When the algorithm terminates, the stack C contains
exactly the vertices of the hull, in counterclockwise order of their appearance on
the boundary (see pseudo-code below, from [11]).

GRAHAM’S SCAN ALGORITHM
Find rightmost lowest point; label it P0.
Sort all other points angularly about P0,

break ties in favour of closeness to P0;
label P1,. . .,Pn−1.

Stack C=(Pn−1,P0)=(Pt−1,Pt); t indexes top.
i = 1
while i < n do

if Pi is strictly left of (Pt−1,Pt)
then Push(C,i) and set i ← i + 1
else Pop(C)

Notice that point Pn−1 ends up twice on C, so a final pop is required in the
algorithm. The following diagrams illustrate some of the behaviour of Graham’s
Scan. The hollow points are the vertices of the hull (shaded region) C at each
stage.

p0

p1

p2

p3
p5p6

p7

p8p9

p10

p4

p0
p10

p2

p1

p3

Step 3: i =2  

p0

p1

p2

p3
p5p6

p7

p8p9

p10

p4

p0
p10

p2

p1

p3

Step 4: i =3  

p0

p1

p2

p3
p5p6

p7

p8p9

p10

p4

p0
p10

p2

p1

p3

p4

Step 5: i =4 
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p0

p1

p2

p3
p5p6

p7

p8p9

p10

p4

p0
p10

p2

p1

p3

: Right turn

Step 6: i =5  

p0

p1

p2

p3
p5p6

p7

p8p9

p10

p4

p0
p10

p2

: Left turn

p1

Step 7: i =5  

p0

p1

p2

p3
p5p6

p7

p8p9

p10

p4

p0
p10

p2

p1

p5

: Convex hull so far

Step 8: i =5  

7.2 Formal Specification of Graham’s Scan

This section describes how we formally specify Graham’s Scan using Hoare logic
in Isabelle. We use lists to represent the point sets P and C, as Isabelle already
has this data structure defined and many of its properties proved. Due to the
way C is updated, the vertices of the final hull are returned in clockwise order,
not counter-clockwise as in the pseudo-code of Section 7.1. The theorem that
needs to be proven is specified as follows:

theorem
"|- .{ ordered P & 3 ≤ length P & distinct P & ¬all_collinear P }.

′i := 0;;
′C := [hd P, last P];;
WHILE ′i < length P
INV .{ Loop invariant }.
DO

IF Left_turn C1 C0 P′i
THEN ′C := P′i # ′C;;

′i := ′i+1
ELSE ′C := tl ′C
FI

OD
.{(butlast ′C) isConvexHull P }."

We have not shown the loop invariant of Graham’s Scan here as it is made up
of numerous components which will be explained in Section 8. Note that the
variables C and i are written with ′ before them. This is to signify that they
change as the program evolves. Also note that new vertices, P′i, are added to
the front of the list of existing vertices, ′C, using list concatenation (#). The
post-condition has to check that all the points, excluding the last one in C (hence
the use of the butlast function), are indeed vertices of the convex hull of P . We
exclude the last point of C as it would appear twice in the list otherwise.

The last three preconditions, in the statement of Graham’s Scan in Isabelle,
prevent us from trying to prove the algorithm is correct for degenerate cases: we
must start with at least three points, they must all be distinct and the points
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cannot all lie in the same line. The preconditions also state that the point set
P must be ordered. Next, we review briefly how this notion is mechanised in
Isabelle.

7.3 Ordering Points

In our formalisation of an ordered point set, we refer to a predicate Lowest_pt,
which represents the point with the minimum y-coordinate in P . Similarly to
the algorithm, we take the rightmost point in case of a tie. Instead of using
trigonometric functions to sort the points by polar angle, we decided to take
advantage of the properties of signed areas. We can say the points in P are
ordered if:

ordered P ≡ P0 = Lowest_pt P ∧
∀m<length P. ∀n<length P. 0 < m ∧ m < n −→

before P0 Pm Pn

where the predicate before is defined as:

before L u v ≡ (u isBetween L v) ∨ (Left_turn L u v)

This can be read as: “if L is the lowest point in P and u and v are any other
two points in P , then u comes before v if it lies strictly between L and v or if
the point v lies to the left of the directed line from L to u”.

Many properties of the ordered predicate have been proven in Isabelle, one
of which is:

ordered P ∧ distinct P ∧ P 
= [] ∧
A mem (take i P) ∧ i < length P ∧ A 
= hd P

=⇒ before (hd P) A Pi

where (take i P ) represents a list of the first i elements in P .

8 Loop Invariants for Graham’s Scan

Formulating the correct loop invariant for Graham’s Scan is the most difficult
task in this particular verification problem. This is because it requires identi-
fying multiple components, which are sufficient to give the desired result on
termination, and which are all true each time the loop is iterated. Discovering
the correct components is an iterative process, where we first start with the
facts we think are necessary in the proof. We then attempt to prove the VCs
using these components. If our attempt is unsuccessful it will usually suggest
additional information which should be added to the loop invariant.

Our first attempt at formalising the loop invariant of Graham’s Scan was
drawn from the written proof given by O’Rourke [11]. This written proof states
that there must always be two points on the stack in order to determine whether
a new point is a vertex of the hull. More specifically, the two points which the
stack is initialised with, (hd P ) and (last P ), must be vertices of the final hull.
In our formalisation, we have the corresponding loop invariant components:
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1. 2 ≤ length C
2. last C = last P
3. last (butlast C) = hd P

The written proof assumes that whenever multiple points are collinear with P0,
all but the furthest are removed in a pre-processing step. With this assumption,
and the ordering by polar angle, P1 must be on the hull. Since the algorithm does
not strictly require the removal of these collinear points, and because this removal
in fact complicates the verification process, we have not made this assumption.
As a result, we introduce a new predicate called furthest_fst_pol_ang. This
predicate is defined as:

furthest_fst_pol_ang P f ≡ ordered P ∧ 2 ≤ length P ∧
f < length P ∧ collinear P0 P1 Pf ∧
¬collinear P0 P1 Pf+1

In words, the point Pf is the furthest first polar angle point in P if P is ordered
and Pf is the point furthest from P0 on the directed line from P0 through P1.1
In the mechanical proof, we also need to keep track of when this vertex appears
on the hull. The written proof’s claim that P1 is on the hull becomes, in our
system, the following component:

4. ∀f . (furthest_fst_pol_ang P f ∧ f < i) −→ Pf mem C

The key step in the algorithm, according to the written proof, is the strict left
turn test, where C0 is removed from C if it is collinear with Pi (the point under
consideration) and C1. The written proof neglects the important case where C0
is removed because of a right turn with respect to Pi. Our corresponding loop
invariant component is:

5. ∀ k. ¬ Pk mem (butlast C) ∧ k < i −→
(∀ j < length C − 2. ¬Left_turn Cj+1 Pk Cj) ∧
(∀ m. C0 = Pm ∧ m < k −→ ¬Left_turn Pm Pk Pi)

This component notes that if we have examined a point Pk which does not belong
to the list of vertices C, then it must have been removed from C at some time.
Thus it will not be a vertex of the final hull. It must therefore lie to the left of
all directed lines from Cj+1 through Cj for all j < length C − 2 or between two
adjacent vertices in the hull so far. It also states that if Pk is considered after
C0 then the current point under examination, Pi, cannot lie to the left of the
directed line from C0 through Pk. This is because if C0, Pk, Pi did make a left
turn then we would not have popped Pk.

With only these five components drawn from the written proof, it is impos-
sible to mechanically verify Graham’s Scan. The following facts are also needed:

1 In many cases Pf will be P1. The predicate is introduced to simplify the case where
P0, P1, ..., Pf are collinear and 1 < f .
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6. i ≤ length P
7. 1 ≤ i
8. 3 ≤ length P
9. ¬all_collinear P

10. ordered P
11. distinct P
12. distinct (butlast C)
13. i = length P −→ last P = hd C
14. ∀ V . V mem (butlast C) −→ V mem (take (i + 1) P )
15. ∀j k l. (j < length C - 1 ∧ l < k ∧ k < j) −→ Left_turn Cj Ck Cl

16. ∀ k < length C - 1. ∃ n < length P . Ck = Pn ∧
((drop k (butlast C)) isConvexHull (take (n + 1) P ) ∨
(all_collinear (take (n + 1) P ) ∧
(length C - k = 2 ∨ length C - k = 3)))

Here i corresponds to the ith point in the ordered list for which the convex hull
is being constructed.

It is fairly clear that components 6 to 12 hold true on each iteration of the
loop. Note that component 6 states that i ≤ length P and not i < length P ,
as it has to hold true on the termination of the loop.

Component 13 states that on termination of the loop, the first vertex in C is
the last point in P , and component 14 states that the points in C must belong
to the set of points we have already examined in P .

The final two components are a little harder to understand. The fact that
the list C has a clockwise ordering is contained in component 15. It states that
if we travel along say Cj to Ck, then we must make a left turn with respect to
vertices of the hull added after Ck.

The final component of the loop invariant reasons about the construction of
the convex hull. It says that during every iteration of the loop, the first vertex in
C must be one of the points in P , say Pk. Up to Pk either we have constructed
a convex hull or all the points are collinear. In the case where all the points up
to Pk are collinear, C must have length 2 or 3.

It is understandable why a written proof may omit some of the above
components, as they seem obvious. However, the process of formal verification
highlights the assumptions people make in written proofs. Several of the above
components are important and non-trivial and the mechanical verification makes
these explicit.

9 Proving the Verification Conditions

Three verification conditions have to be proven in order to show the partial cor-
rectness of Graham’s Scan. Next, we briefly discuss their proofs.

VC 1: The first verification condition shows that the preconditions imply the
loop invariant holds true at the beginning, with the initialisations i = 0 and
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C being [hd P , last P ]. This is a fairly trivial proof. Components 1-15 of the
loop invariant are proved easily from the pre-conditions. To prove component 16
holds true at first, we must show:

ordered P ∧ 3 ≤ length P ∧ distinct P ∧ ¬all_collinear P
=⇒ ∃n< length P. P0 = Pn ∧

([ P0] isConvexHull (take (Suc n) P) ∨
all_collinear (take (Suc n) P))

To prove this we eliminate the existential quantifier and instantiate n to be 0.
It is then trivial to show all_collinear (take 1 P ) by merely expanding the
definition of collinear.

VC 2: The second verification condition to prove is:

Loop invariant ∧ ¬ i < length P =⇒ (butlast C) isConvexHull P

The proof of this VC involves deriving the fact i = length P from the assump-
tions. We then instantiate k to be 0 in component 16 of the loop invariant. From
this and components 3 and 13 of the loop invariant we know the following facts:

a) last P = Plength P−1 = Pn = hd C
b) (butlast C) isConvexHull (take (n + 1) P ) ∨

(all_collinear (take (n + 1) P ) ∧
(length C - n = 2 ∨ length C - n = 3))

From the assumption that all points in P are distinct and fact (a) above, we
show n = length P − 1. This allows (b) to reduce to (butlast C) isConvexHull
P ∨ (all_collinear P ∧ ...). From the loop invariant we know that the list of
points in P are not all collinear, hence we are left with the desired result.

VC 3: The third verification condition is the most difficult to prove. It involves
showing that the loop invariant and loop test are preserved after executing the
body of the loop. The proof splits into two cases: one where we turn left with
respect to the new point being examined in P , and one where we do not turn left.
Both cases require several lemmas to be proven. The crux of the proof involves
showing that component 16 of the invariant is preserved if we make a left turn
with the respect to the new point Pi:

Loop Invariant ∧ i < length P ∧ Left_turn C1 C0 Pi =⇒
∀ k<length (Pi # C) - 1.

∃ n<length P. (Pi # C)k = Pn ∧
((drop k (butlast (Pi # C))) isConvexHull (take (n + 1) P) ∨

all_collinear (take (n + 1) P) ∧
(length (Pi # C) - k = 2 ∨ length (Pi # C) - k = 3))"

This lemma is basically showing that for every update of C we maintain the
property that we have constructed a convex hull or all the points are collinear
upto the last vertex added. For the case where k<0, we have to prove that every
C before Pi was added meets this property. From our assumptions, specifically
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component 16 of the loop invariant, this is easily shown. The complicated part of
the proof deals with the case where k=0. Here we have just pushed a new vertex
Pi onto the hull and must prove that we maintain the property of convexity or
collinearity. The proof splits into three cases; the hull before Pi was added could
have contained 2, 3 or more vertices on it. These are illustrated below with a
brief description of how each case is tackled (recall that the current hull C is
ordered clockwise).

P0P(length P − 1)

Pi

Case One: C=[P0, Plength P−1]
Clearly once Pi is added to the hull so far,
our updated C will contain 3 points. We
have to show that all points in P upto
Pi are collinear. Now, the points which
we considered before Pi must have been
popped by the algorithm, as they cannot
be vertices. We show that these popped
points lie between P0 and Pi using com-
ponents 10 and 5 of our invariant. Thus
our new hull, Pi # C, meets the desired
property of collinearity.

P0P(length P − 1)

P

Pi

n

Case Two: C=[Pn, P0, Plength P−1]
Once Pi gets added to our hull, our up-
dated C is going to contain 4 points.
We must show that (butlast (Pi # C)))
is the convex hull of all points in P
upto Pi. We first deduce that Pn is the
furthest_fst_pol_ang point. Thus all
points considered after P0 and before Pn

must lie between these two vertices. We
must then reason about the points popped
after Pn and before Pi using component 5
of the invariant. Together these facts give
us the desired property of a convex hull.

P0P(length P − 1)

P

Pi

n

Pm

Pl Case Three: C=[Pl, Pm, Pn, P0,
Plength P−1]
This case is similar to Case Two. Before Pi

is added as a vertex, our C contains the
vertices of the convex hull up to Pl. We
need to prove that adding Pi maintains the
convexity property, this time for all points
in P up to Pi. We use component 5 again
to reason about points popped after Pl and
before Pi. This, together with the fact we
had a convex hull after the previous itera-
tion of the loop, helps us derive our result.
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Notice that both Cases Two and Three reason about popped points using
component 5 of the loop invariant. Proving that this component holds every
time we enter and leave the body of the loop was challenging, especially for the
case where we do not turn left with respect to the new point Pi. The difficult
part of the proof revolves around showing the following lemma:

Loop invariant ∧ i < length P ∧ ¬ Left_turn C1 C0 Pi ∧
¬ Pk mem butlast (tl C) ∧ k < i ∧ j < length (tl C) - 2 ∧
(tl C)0 = Pm ∧ m < k =⇒

¬ Left_turn Pm Pk Pi"

i

P

P

P

m

0

1

2

3

P k can lie
at either
1, 2 or 3 Pn

Must show
cannot lie inside
this triangle

Pk

Fig. 3. Three possible cases in proof

The proof splits into many cases, due to the fact that collinear points are
allowed in our system. Three of the non-collinear cases are illustrated in Figure
3. Here the point Pk could lie at either positions 1, 2 or, in the general case, 3.
If Pk is lying at 3 then we need to use Knuth’s property 5b to deduce the fact
Left_turn Pk Pm Pi from the following instantiations: s = P0, t = Pm, p =
Pi, q = Pn, r = Pk. In order to apply this lemma with these instantiations the
following five facts need to hold:

1. Left_turn P0 Pm Pi 2. Left_turn P0 Pm Pn 3. Left_turn P0 Pm Pk

4. Left_turn Pm Pi Pn 5. Left_turn Pm Pn Pk

Although components 5 and 15 of the loop invariant help derive many of these
facts easily, the process was fairly tedious to work out by hand first and then
mechanise. If more of the geometry theorem proving could be automated in
Isabelle, the verification task would be much easier.

10 On Automation

Based on our experience, automating the proof of Graham’s Scan in Hoare logic is
a challenging task. This is, in part, due to the formulation of the loop invariant,
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which is a complex process. Although several researchers have attempted to
automate the proofs of imperative programs using Hoare logic, they have not
had great success. The most promising results have come out of the work done by
Stark and Ireland, who investigated the automatic discovery of loop invariants
in the CLAM proof planning system [15]. Despite this work showing a good
foundation to build upon, it is worth bearing in mind that Stark and Ireland
did not test their approach on geometric problems. It is therefore unclear how
applicable their approach would be in this domain.

Incorporating automation into the mechanisation process has wider scope
than just discovering the correct loop invariant. In our case, the verification
conditions generated in Isabelle are merely statements in higher order logic.
If we could automate the proofs of these statements, our task would be greatly
simplified. As our proof reasoned so much about signed areas we wondered about
incorporating the Signed Area method [1] into Isabelle. However, it turned out
not to serve our purposes well as collinearities are not dealt with. We also found
restrictions with the existing algebraic techniques used in geometry theorem
proving; either they did not deal with collinearites sufficiently or they could not
reason about inequalities and hence ordered geometry. We have noted that it
is possible to translate our geometric lemmas into algebraic form and use some
existing system, like Maple or QEPCAD’s cylindrical algebraic decomposition,
to solve them. We recognise that there are drawbacks to this approach; we must
have trust in the external system, and understanding the proofs intuitively would
be difficult. Often a desirable characteristic of a proof is that it be surveyable.
We believe the same should apply for program verification, as ideally we want
an insight into the algorithm being verified. We are currently investigating how
to obtain the correct level of abstraction in a proof so that it can be understood
on an intuitive geometric level before being translated into algebraic form.

It is interesting to note one typical subgoal we encountered:

Left_turn s t q ∧ Left_turn s t r ∧ Left_turn t q r ∧
Left_turn s r q ∧ ¬Left_turn p s q =⇒ Left_turn p q s

Notice that the first four assumptions could never simultaneously hold here,
so the subgoal is trivially true. Our proof contained many such subgoals, all
of which were tedious to discharge. We plan to try and automatically generate
counterexamples for such cases, thus simplifying the proof process.

11 Related Work

Although our work is the first to formally verify Graham’s Scan using Hoare logic,
it is not the first to mechanise the correctness proofs of convex hull algorithms.
Similar to our research, Pichardie and Bertot were inspired by the work of Knuth
[13]. However, they used the theorem prover Coq and proved the correctness
of two different algorithms: an incremental algorithm and a package wrapping
algorithm. They adopted Knuth’s method of disallowing collinear points in their
CC system and then modified this using two different approaches. Their first



Mechanical Theorem Proving in Computational Geometry 17

approach was to add axioms into their system. It is not clear from their paper if
these axioms were proven for the planar case in Coq2. Their second approach at
dealing with degeneracies is more interesting as they formalised a perturbation
technique for dealing with degenerate cases. This technique was flawed however,
as points which lay between two adjacent vertices were sometimes returned as
legitimate vertices. Their verification also differed from our work as it focused
more on the mechanisation aspects rather than the subtleties overlooked by
humans in written proofs.

12 Conclusion

In conclusion, we believe that formally proving geometric algorithms in a theo-
rem prover like Isabelle adds confidence in their correctness, and consequently
we believe it should become an important stage in the development process of
such algorithms. Despite the difficulty of proving these algorithms at present,
we believe that by building libraries of useful theories, and by gaining a bet-
ter understanding of the field, this task will get easier. Our work demonstrates
how successful Hoare logic can be for formalising geometric algorithms. Not only
does it allow the formal specifications to resemble the algorithm, but it forces
one to think carefully about algorithms involving loops. By formalising the facts
that never change on each iteration of the loop, it is often possible to get a bet-
ter understanding of the algorithm and reveal unforeseen situations that might
otherwise go undetected.

Although confidence in geometric algorithms can be boosted by proofs such
as ours, it is important to highlight that these proofs do not guarantee complete
correctness. In some instances appropriate input data can unfortunately cause
a seemingly correct program to fail. This is due to the fact that geometric al-
gorithms commonly suffer from the problem of nonrobustness, which is caused
by two factors: the use of real-world data, which may be degenerate, and the
substitution of floating-point arithmetic for real arithmetic. For future work, we
plan to incorporate these issues of nonrobustness into the mechanical proof.

References

1. S. C. Chou, X. S. Gao, and J. Z. Zhang. Automated generation of readable proofs
with geometric invariants, I. multiple and shortest proof generation. Journal of
Automated Reasoning, 17:325-347, 1996.

2. A. Church. A formulation of the simple theory of type. Journal of Symbolic Logic,
5:56-68, 1940.

3. M. Gordon. Mechanizing Programming Logics in Higher Order Logic. Current
Trends in Hardware Verification and Automated Theorem Proving, G. Birtwistle
and P. A. Subrahmanyam, Springer, 1989.

2 Axiom 8 in their paper is in fact inconsistent; this may be a typo but it is not clear
what is intended.



18 L.I. Meikle and J.D. Fleuriot

4. M. Gordon and T. Melham. Introduction to HOL: A theorem proving environment
for Higher Order Logic. Cambridge University Press, 1993.

5. R. L. Graham. An efficient algorithm for determining the convex hull of a finite
planar set. Info. Proc. Lett. 1, pages 132-133, 1972.

6. D. Hilbert. The Foundations of Geometry. The Open Court Company, 2001, 11th
edition. Translation by Leo Unger.

7. C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, v. 12 n. 10, pages 576-580, 1969.

8. D. E. Knuth. Axioms and Hulls. Lecture Notes in Computer Science, Volume 606.
Springer, 1992.

9. L. Meikle and J. Fleuriot. Formalizing Hilbert’s Grundlagen in Isabelle/Isar.
TPHOLs, vol. 2758, pages 319-334, Springer, 2003.

10. T. Nipkow. Hoare Logics in Isabelle/HOL. Proof and System Reliability, Kluwer,
2002.

11. J. O’Rourke. Computational Geometry in C. Cambridge University Press, 1994.
12. L. C. Paulson. Isabelle: A Generic Theorem Prover. Lecture Notes in Computer

Science, Volume 828. Springer, 1994.
13. D. Pichardie and Y. Bertot. Formalizing Convex Hull Algorithms. TPHOLs, 346-

361, Springer, 2001.
14. F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.

Springer, 1985.
15. J. Stark and A. Ireland. Invariant Discovery via Failed Proof Attempts. Lecture

Notes in Computer Science, Volume 1559, page 271. Springer, 1998.



Computational Origami Construction of a
Regular Heptagon with Automated Proof of Its

Correctness

Judit Robu1, Tetsuo Ida2, Dorin Ţepeneu2,
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Abstract. Construction of geometrical objects by origami, the Japanese
traditional art of paper folding, is enjoyable and intriguing. It attracted
the minds of artists, mathematicians and computer scientists for many
centuries. Origami will become a more rigorous, effective and enjoyable
art if the origami constructions can be visualized on the computer and the
correctness of the constructions can be automatically proved by an algo-
rithm. We call the methodology of visualizing and automatically proving
origami constructions computational origami. As a non-trivial example,
in this paper, we visualize a construction of a regular heptagon by origami
and automatically prove the correctness of the construction.

1 Introduction

1.1 Origami

Origami, being an art since the 10th century in Japan, became an object of
extensive scientific study around the end of 1980’s as mathematicians became
interested in the mathematical principles of origami. A seminal work in the
history of mathematical origami is that of Huzita, who proposed six axioms of
origami [9]. It is known that Huzita’s origami axiom set is more powerful than
the ruler-and-compass method in Euclidean geometry [7]. In [1] Alperin studied
the algebraic structure of the set of Origami constructible points. He identifies
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the set of marked points by the application of Huzita’s Axioms 1−3, Axioms
1−5, and Axioms 1−6, as some fields.

Origami constructions are expressed concisely by the following axiom set:

(FoldThru). Given two points P and Q, we can make a fold along the crease
passing through them.

(FoldBring). Given two points P and Q, we can make a fold to bring one of
the points onto the other.

(FoldBringLine). Given two lines m and n, we can make a fold to superpose
the two lines.

(FoldPerTh). Given a point P and a line m, we can make a fold along the
crease that is perpendicular to m and passes through P .

(FoldBrTh). Given two points P and Q and a line m, either we can make a
fold along the crease that passes through Q, such that the fold superposes
P onto m, or we can determine that the fold is impossible.

(FoldBrBr). Given two points P and Q and two lines m and n, either we can
make a fold along the crease, such that the fold superposes P and m, and Q
and n, simultaneously, or we can determine that the fold is impossible.

A rigorous presentation of origami constructions is in [11]. The axiom set pro-
vides the basis of computational origami. Namely, by implementing the axiom
set by a computer, we can construct sophisticated origami works. Although the
notion of completeness is unclear as we do not yet identify a class of origami
constructible geometrical objects, by the subsequent works of several mathe-
maticians, we know that origami is more powerful than classical Euclidean con-
struction by a ruler and a compass. Huzita’s 6th axiom plainly states that we
can make a fold that brings two points on two lines. The statement is more
profound than we might think. From the computational point of view, we see
that folding involves solving third degree polynomial equations, and from op-
erational point of view we observe that we need a kind of sliding of one point
along a fold line to bring the other point onto the other line. It was shown that
this operation can not be performed by the ruler-and-compass method. One of
the simplest geometric constructions that verifies this remark is trisecting an
angle. A more sophisticated example is the construction of a regular heptagon.
However, Gleason [8], who developed the theory of the angle trisector gave a con-
struction using ruler, compass and the angle trisector. Huzita already showed
the origami method of constructing a regular heptagon together with the cor-
rectness proof [10], possibly without imagining fully automated origami solving
and proving.

1.2 Novelties

This paper presents, on the non-trivial example of the heptagon construction, a
convenient tool for computing and visualizing the intermediate steps of origami
constructions and an automated proof of the correctness of the construction. The
algorithmic method used for the correctness proof is completely general and can
be applied to any origami construction whose conclusion can be formulated as
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a polynomial equality in the coordinates of the points involved. We use Theo-
rema and the geometrical theorem prover constructed on top of Theorema for
proving, and a computational origami system for solving geometrical constraints
and visualizing origami. The proof performed by Theorema uses Buchberger’s
Gröbner bases method, see e.g. [2]. The computational origami system consists
of a human-friendly web interface and of solving and computing engines situated
on remote servers.

1.3 Motivation

We are interested in computing, solving and proving (and the interaction of these
activities) in mathematical problem solving. Indeed, most of the sophisticated
problems that mathematicians and computer scientists face in their research life
involve these three intellectual activities. Origami, which is tangible as we use
concrete material, i.e. a piece of paper, is in fact very abstract and requires the
interplay of these three activities. Furthermore by computational origami we
give origami construction yet another level of sophistication. More concretely,
by the system of computational origami we aim to provide

1. a tool for creating artworks of origami,
2. a pedagogical tool for teaching mathematics, in particular, geometry,
3. an environment for doing research in geometry and in geometrical theorem

proving.

1.4 Our Contribution

After illustrating the visualization of the construction of a regular heptagon by
the computational origami system, we will focus on proving the correctness of
the construction. At the time of writing, the computational origami system,
Theorema and the geometrical theorem prover are not entirely integrated, they
communicate through files. It is straightforward to put them together since all
of the systems are written in Mathematica. However, we are more interested
in the interaction of the three system in a distributed computer environment.
Rather than combining the three systems into one, we are trying to make the
three systems interact over the Internet. Our vision is to realize a symbolic grid
computing framework, under which our three systems are able to interact with
each other [15].

2 The Regular Heptagon Problem

2.1 Constructing a Heptagon

We give an example of constructing a heptagon in the origami system. This
example also shows a nontrivial use of Axiom 6 (FoldBrBr). Huzita in [10] gave a
construction sequence for this problem. In our implementation all the operations
are performed by Mathematica function calls.



22 J. Robu et al.

Fig. 1. Heptagon construction steps 1-13

Step 1: First, we define a square origami paper, whose corners are designated
by the points A, B, C and D. The size may be arbitrary, but for our exam-
ple, let us fix it to 100 by 100. The new origami figure is created with two
differently colored surfaces: a light-gray front and a dark-gray back.

NewOrigami[Square[100, MarkPoints → {’A’,’B’,’C’,’D’}],
FigureCaption → ’Step ’];

Our problem is to construct a heptagon in the origami space. The method
consists of the following 38 steps (steps 2-39) of folds and unfolds.

Steps 2 and 3: We make a fold to bring point A to point D, to obtain the per-
pendicular bisector of segment AD. This is the application of (FoldBring).
The points E and F are automatically generated by the system. We unfold
the origami and obtain the crease EF .

FoldBring[A, D];
Unfold[];

Steps 4 and 5: Likewise we obtain the crease HG, points H and G being on
the segments CD and EF .

FoldBring[A, B,MarkCrease → {CD, EF}];
Unfold[];

Steps 6-13: Applying four more times axiom (FoldBring) we obtain in order
points K, L, crease MN and point O.



Computational Origami Construction of a Regular Heptagon 23

FoldBring[D, H,MarkCrease → {FE}];
Unfold[];
FoldBring[C, H,MarkCrease → {CD}];
Unfold[];
FoldBring[L, H,MarkCrease → {AB, CD}];
Unfold[];
FoldBring[A, F,MarkCrease → {MN}];
Unfold[];

Fig. 2. Heptagon construction steps 14-22

Steps 14 and 15: Step 14 is the crucial step of the construction. We will su-
perpose point K and the line that is the extension of the segment HG, and
superpose point O and the line that is the extension of the segment EG,
simultaneously. This is possible by (FoldBrBr) and is realized by the call of
function FoldBrBr. There are three candidate fold lines to make these su-
perpositions possible. The system responds with the query “Specify the line
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number” together with the fold lines on the origami image. We reply with
the call of FoldBrBr with the additional parameter 3, which tells the system
that we choose line number 3. This is the fold line that we are primarily
interested in. However, the other two fold lines are also solutions (then we
do not obtain the vertices of the heptagon in order).

FoldBrBr[K, HG, O, EG];
FoldBrBr[K, HG, O, EG, 3];

Step 16: We will duplicate point K on the face that is below the one that K is
on, and unfold the origami. The duplicated point appears as Q. Duplication
of a point is not counted as a new step by the system. The names of the
points are automatically generated.

DupPoint[’K’];
Unfold[];

Steps 17 and 18: We obtain point U as being on the crease obtained folding
along a line passing through point Q and perpendicular to HG moving point
H . Then we unfold the origami.

FoldPerTh[ HG, Q, H, MarkCrease → {BC}];
Unfold[];

Steps 19 and 20: In step 19 we use the other interesting axiom (FoldBrTh),
superposing point H and the line that is the extension of the segment RU
folding along a crease that passes through point G. There are two candidate
fold lines to make this superposition possible. The system responds with the
query “Specify the line number” together with the fold lines on the origami
image. We reply with the call of FoldBrTh with the additional parameter 2,
which tells the system that we choose the line number 2. This is the fold line
that we are primarily interested in. However, the other line is also solution
(then we don’t obtain the vertices of the heptagon in order).

FoldBrTh[H, RU, G];
FoldBrTh[H, RU, G,2];

Steps 21 and 22: We will duplicate point H on the other face that is below
the face that H is on, and unfold the origami. The duplicated point appears
as V . We delete the labels of the points that are not any more interesting.
At this point, the main part of the construction is achieved, as we obtained
the angle � HGV = 2π/7.

DupPoint[’H’];
Unfold[];

Steps 23 and 24: We obtain the next vertex by mirroring point H versus the
line passing through points G and V , duplicating point H on the face below
obtaining point E and unfolding the origami. We observe that the deleted
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Fig. 3. Heptagon construction steps 23-40

labels are reused by the system when automatically allocating names to the
constructed points.

FoldThru[G, V, H];
DupPoint[’H’]
Unfold[];

Steps 25-32: Repeating the previous steps we obtain the other four vertices of
the heptagon, namely points F , K, M and N .

FoldThru[G, V, H];
DupPoint[’H’]
Unfold[];
FoldThru[G, E, V];
DupPoint[’V’]
Unfold[];
FoldThru[G, F, E];
DupPoint[’E’]
Unfold[];
FoldThru[G, K, F];
DupPoint[’F’]
Unfold[];

Steps 33-40: To obtain the heptagon we fold along the edges and finally turn the
origami to its other side (as if it were a real piece of paper) to hide the folds.
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FoldThru[V, E, C];
FoldThru[E, F, B];
FoldThru[F, L, A];
FoldThru[L, M, A];
FoldThru[M, N, D];
FoldThru[N, H, D];
FoldThru[H, V, C];
TurnOver[]

2.2 Proving the Correctness

How can we be sure that the construction really gives a regular heptagon? We
have to prove the following:

Theorem 1. The origami construction in section 2.1 produces a regular heptagon.

Huzita [10] proved the correctness of the construction making use of geometric
intuition and high school mathematics.

We want one algorithm for all such proofs. This can be done by reducing, in
an algorithmic way, the proof problem to a problem in computer algebra, e.g.
Gröbner basis computation [11]. This is possible because:

– each origami step is described by polynomial equalities;
– the sequence of steps and the final assertion, together, form a universally

quantified boolean combination of polynomial equalities;
– this universally quantified formula can be converted, using predicate logic

and Rabinovich’s trick [12], into a finite number of decisions about solvability
of polynomial equations;

– these solvability decisions can be answered algorithmically by invocation of
Buchberger’s Gröbner basis algorithm.

For the heptagon problem we may have two different approaches:

– to prove that the obtained seven edges are of equal length (it is enough to
prove that |HN | = |HV |).

– to prove that the angle formed by two adjacent corners and the center of the
heptagon is 2π/7, that is, � HGV = 2π/7

We used both approaches, the first one with the origami prover built on top
of the geometrical theorem prover [14] of Theorema [4], the second one with the
proving facility built in the origami system.

3 Automated Proof in Theorema

Theorema is a mathematical software system implemented in Mathematica and,
hence, is available on all computer platforms for which Mathematica is available.
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Theorema aims at providing one uniform logical and software technological frame
for automated theorem proving in all areas of mathematics or, in other words
and more generally, for formal mathematics, i.e. proving, solving, and simplifying
mathematical formulae relative to mathematical knowledge bases, see [3], [4].
Theorema is being developed at the RISC Institute by the Theorema Group
under the direction of Bruno Buchberger.

Theorema offers a user-friendly interface for problem input. It generates fully
automatically the proofs that contain all the necessary explanations.

The geometry prover is based on the methods described in [16], [6], [13].
The input for the geometry prover, i.e. the algebraic formulation of all the
construction steps and of the property the final configuration should satisfy
is generated automatically from the geometric description of the origami con-
struction and the conclusion specified by the user. This information is then
sent, as a Theorema Proposition to the automated prover for proving / disprov-
ing whether, for all possible input configurations, after applying the construc-
tion steps specified, the final configuration always satisfies the desired property.
Executing

$origami = << D:\TheoremaPrivate\heptagon;
$origamiTh = TransOrigami[$origami, H4 V18 = H4 N28]

we obtain a Theorema Proposition to be proved (see the output of the prover).
To display graphically the geometrical constraints among the involved points

and lines we call function Simplify that uses the KnowledgeBase C1 to specify
the coordinates of the free points

KnowledgeBase[’C1’,any[A,B],{{A,{0,0}},{B,{100,0}}}]
Simplify[$origamiTh,

by → GraphicSimplifier, using → KnowledgeBase[’C1’]]

and obtain the output presented in Fig. 4.
The geometry prover is invoked in the usual Theorema manner, specifying

the Gröbner basis prover. Theorema does the rest of the work:

– finds a convenient coordinate system;
– expresses the origami constructions and the final assertion as a universally

quantified boolean combination of polynomial equalities and inequalities,
using the cartesian coordinates of the constructed points;

– converts this universally quantified formula, using predicate logic and Rabi-
novich’s trick, into a finite number of decisions about solvability of polyno-
mial equations;

– invokes the Mathematica GröbnerBasis function to answer these solvability
decisions;

– generates the notebook with all the explained details of the proof.
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|H4 V18| ∼= |H4 N28| for this configuration of the points

Fig. 4. Theorema output

For the function call

Prove[$origamiTh, by → GeometryProver,
ProverOptions → {Method → "GroebnerProver",
MyAxis → True, ReverseVars → True,
Refutation → True}]

we obtain the following output from the prover:

Begin of Theorema notebook

We have to prove:

(Proposition(Origami))
∀

A1,B1,C1,D1,E2,F2,G4,H4,J6,L8,M10,N10,O12,O14,Q14,U16,V 18,E20,F22,K24,M26,N28

(neworigami[A1, B1, C1, D1]∧
foldBring[A1, D1, crease[E2 on line[B1, C1], F2 on line[D1, C1]]]∧
foldBring[A1, B1, crease[G4 on line[E2, F2], H4 on line[C1, D1]]]∧
foldBring[D1, H4, crease[J6 on line[E2, F2]]]∧
foldBring[C1, H4, crease[L8 on line[C1, D1]]]∧
foldBring[L8, H4, crease[M10 on line[A1, B1], N10 on line[D1, C1]]]∧
foldBring[A1, F2, crease[O12 on line[M10, N10]]]∧
foldBrBr[Q14, J6, line[H4, G4], O14, O12, line[E2, G4]]∧
foldPerTh[line[H4, G4], crease[Q14, U16 on line[B1, C1]]]∧
foldBrTh[V 18, H4, line[Q14, U16G4], crease[G4]]∧
foldThru[E20, H4, crease[line[G4, V 18]]]∧
foldThru[F22, V 18, crease[line[G4, E20]]]∧
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foldThru[K24, E20, crease[line[G4, F22]]]∧
foldThru[M26, F22, crease[line[G4, K24]]]∧
foldThru[N28, K24, crease[line[G4, M26]]] ⇒

distequal[H4, V 18, H4, N28]])

with no assumptions.
To prove the above statement we use the Gröbner bases method. First we

have to transform the problem into algebraic form.
To transform the geometric problem into an algebraic form we choose an

orthogonal coordinate system.
Let us have the origin at point A1, and points {B1, M10} and {D1, F2} on

the two axes.
Using this coordinate system we have the following coordinates:

{{A1, 0, 0}, {B1, 1, 0}, {D1, 0, x1}, {αE2, 0, x2}, {F2, 0, x3}, {αG4, x4, 0},
{M10, x5, 0}, {αO12, 0, x6}, {βO14, 0, x7}, {C1, x8, x9}, {E2, x10, x11},
{G4, x12, x13}, {H4, x14, x15}, {αJ6, x16, x17}, {J6, x18, x19},
{αL8, x20, x21}, {L8, x22, x23}, {αM10, x24, x25}, {N10, x26, x27}},
{O12, x28, x29}, {Q14, x30, x31}, {βQ14, x32, x33}, {αO14, x34, x35}},
{O14, x36, x37}, {U16, x38, x39}, {V 18, x40, x41}, {αV 18, x42, x43}},
{αE20, x44, x45}, {E20, x46, x47}, {αF22, x48, x49}, {F22, x50, x51}},
{αK24, x52, x53}, {K24, x54, x55}, {αM26, x56, x57}, {M26, x58, x59}},
{αN28, x60, x61}, {N28, x62, x63}

where αX and/or βX are variables generated internally to create point X .
The algebraic form1 of the given construction is:

(1)
∀

x1,...,x63

((−1) + −x1 == 0 ∧ (−1) + x8 == 0 ∧ −x1
2 + x1x9 == 0∧

−x1 + 2x2 == 0 ∧ −x9 + x9x10 + x11 + −x8x11 == 0∧
x1x2 + −x1x11 == 0 ∧ x1x2 + −x1x3 == 0∧
(−1) + 2x4 == 0 ∧ −x3x10 + x3x12 + −x11x12 + x10x13 == 0∧
x4 + −x12 == 0 ∧ −x1x8 + x1x14 + −x9x14 + x8x15 == 0∧
x4 + −x14 == 0 ∧ −x14 + 2x16 == 0 ∧−x1 + −x15 + 2x17 == 0∧
−x3x10 + x3x18 + −x11x18 + x10x19 == 0∧
x14x16 + −x1x17 + x15x17 + −x14x18 + x1x19 + −x15x19 == 0∧
−x8 + −x14 + 2x20 == 0 ∧−x9 + −x15 + 2x21 == 0∧
−x1x8 + x1x22 + −x9x22 + x8x23 == 0∧
−x8x20 + x14x20 + −x9x21 + x15x21 + x8x22+

−x14x22 + x9x23 + −x15x23 == 0∧
−x14 + −x22 + 2x24 == 0 ∧ −x15 + −x23 + 2x25 == 0∧
−x5x14 + x5x22 + x14x24 + −x22x24 + x15x25 + −x23x25 == 0∧
−x1x8 + x1x26 + −x9x26 + x8x27 == 0∧
x14x24 + −x22x24 + x15x25 + −x23x25 + −x14x26+

x22x26 + −x15x27 + x23x27 == 0 ∧ −x3 + 2x6 == 0∧

1 Notation x1, ..., x63 represents the full sequence of consecutive variables from x1 to
x63.
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x5x27 + x27x28 + x5x29 + −x26x29 == 0 ∧ x3x6 + −x3x29 == 0∧
−x13x14 + x12x15 + x13x30 + −x15x30 + −x12x31 + x14x31 == 0∧
−x18 + −x30 + 2x32 == 0 ∧ −x19 + −x31 + 2x33 == 0∧
−x7x19 + x7x31 + x18x32 + −x30x32 + x19x33 + −x31x33 == 0∧
−x7x32 + x7x34 + −x33x34 + x32x35 == 0∧
x7x29 + −x28x32 + −x29x33 + x32x34 + −x7x35 + x33x35 == 0∧
−x28 + 2x34 + −x36 == 0 ∧ −x29 + 2x35 + −x37 == 0∧
−x11x12 + x10x13 + x11x36 + −x13x36 + −x10x37 + x12x37 == 0∧
x12x30 + −x14x30 + x13x31 + −x15x31+

−x12x38 + x14x38 + −x13x39 + x15x39 == 0∧
−x9 + x9x38 + x39 + −x8x39 == 0∧
x31x38 + −x30x39 + −x31x40 + x39x40 + x30x41 + −x38x41 == 0∧
−x14 + −x40 + 2x42 == 0 ∧ −x15 + −x41 + 2x43 == 0∧
2x12x40 + 2x13x41 + −2x12x42 + 2x40x42 + 2x42

2 + −2x13x43+
−2x41x43 + 2x43

2 == 0∧
x13x40 + −x12x41 + −x13x44 + x41x44 + x12x45 + −x40x45 == 0∧
−x12x14 + −x13x15 + x14x40 + x15x41+

x12x44 + −x40x44 + x13x45 + −x41x45 == 0∧
−x14 + 2x44 + −x46 == 0 ∧ −x15 + 2x45 + −x47 == 0∧
x13x46 + −x12x47 + −x13x48 + x47x48 + x12x49 + −x46x49 == 0∧
−x12x40 + −x13x41 + x40x46 + x41x47+

x12x48 + −x46x48 + x13x49 + −x47x49 == 0∧
−x40 + 2x48 + −x50 == 0 ∧ −x41 + 2x49 + −x51 == 0∧
x13x50 + −x12x51 + −x13x52 + x51x52 + x12x53 + −x50x53 == 0∧
−x12x46 + −x13x47 + x46x50 + x47x51+

x12x52 + −x50x52 + x13x53 + −x51x53 == 0∧
−x46 + 2x52 + −x54 == 0 ∧ −x47 + 2x53 + −x55 == 0∧
x13x54 + −x12x55 + −x13x56 + x55x56 + x12x57 + −x54x57 == 0∧
−x12x50 + −x13x51 + x50x54 + x51x55+

x12x56 + −x54x56 + x13x57 + −x55x57 == 0∧
−x50 + 2x56 + −x58 == 0 ∧ −x51 + 2x57 + −x59 == 0∧
x13x58 + −x12x59 + −x13x60 + x59x60 + x12x61 + −x58x61 == 0∧
−x12x54 + −x13x55 + x54x58 + x55x59+

x12x60 + −x58x60 + x13x61 + −x59x61 == 0∧
−x54 + 2x60 + −x62 == 0 ∧ −x55 + 2x61 + −x63 == 0 ⇒

−2x14x40 + x40
2 + −2x15x41 + x41

2+
2x14x62 + −x62

2 + 2x15x63 + −x63
2 == 0

)
This problem is equivalent to2:

(2)
¬ ∃

x1,...,x63

((−1) + −x1 == 0 ∧ (−1) + x8 == 0 ∧ −x1
2 + x1x9 == 0∧

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
−x54 + 2x60 + −x62 == 0 ∧ −x55 + 2x61 + −x63 == 0∧

2 We shall not repeat all the polynomials.
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−2x14x40 + x40
2 + −2x15x41 + x41

2+
2x14x62 + −x62

2 + 2x15x63 + −x63
2 	= 0

)
To remove the last inequality, we use the well-known Rabinovich trick. Let v0

be a new variable. Then the problem becomes:

(3)
¬ ∃

v0,x1,...,x63

((−1) + −x1 == 0 ∧ (−1) + x8 == 0 ∧ −x1
2 + x1x9 == 0∧

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
−x54 + 2x60 + −x62 == 0 ∧ −x55 + 2x61 + −x63 == 0∧
1 + −v0(−2x14x40 + x40

2 + −2x15x41 + x41
2+

2x14x62 + −x62
2 + 2x15x63 + −x63

2) == 0
)

To prove this statement we have to compute the Gröbner bases of the above
polynomials.

The polynomials of the Gröbner bases are: {1}

As the obtained Gröbner bases is 1 the statement is generically true.

End of Theorema notebook.

4 Conclusions

In this paper we gave an automated correctness proof of an origami construc-
tion of a regular heptagon. This illustrates our recent research in a combined
technology for algorithmic simplifying, solving, and proving.

In our future research, we will pursue origami computation in four directions:

– Improving the software technology for the interaction of symbolic and gra-
phic systems over the web.

– A systematic investigation of the origami axioms: We will analyze the origami
axioms with respect to the existence of creases with real coordinates and,
correspondingly, the suitability of algorithmic methods from real algebraic
geometry for the correctness proofs of origami constructions. Also, we want
to make the sliding operation the basic building block of origami opera-
tions and, consequently, we will also introduce generalized origami axioms of
higher order, in which points can slide not only on lines but on higher order
curves already constructed by origami steps.

– In certain artistic origami constructions it is essential that the construction
executed by foldings on the plane paper are, actually, expanded to 3D. Also,
for certain constructions, it is necessary that the paper is distorted for a
moment (in 3D space) in order to execute certain foldings. The role of 3D
space in origami is not yet appropriately reflected by the current origami
axioms. We intend to analyze the role of 3D and formalize it in terms of
appropriate axioms.
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– Origami solving: In the past two years we introduced the new aspect of au-
tomated origami proving to origami theory. As the next step, we want to
add the aspect of automated origami solving which goes beyond automated
origami proving: In origami proving, the construction (a sequence of origami
steps) is given and we want to answer, by an algorithm, the question whether
or not, for all possible initial situations, the resulting object has certain prop-
erties. In contrast, in origami solving we formulate desired properties of a
configuration to be constructed (for example, the property that a constructed
angle is one third of an initial angle or the property that the constructed
configuration is a regular heptagon) and ask to find a sequence of admissi-
ble origami steps that yields a configuration with the desired property. Of
course, it may turn out that, for certain properties, such a sequence can-
not exist. In the case of ruler and compass geometry, solving questions are
traditionally answered by Galois theory. In the case of origami solving, the
corresponding study via Galois theory is open. The origami solving problem
can also be considered under the aspect of automated algorithm synthesis.
Recent progress in this area has been made within the Theorema system
based on the use of algorithm schemes and the automated analysis of failing
correctness proofs, see [5]. We expect that the combination of this heuristic
method with Galois techniques may lead to new insights and practical tech-
niques for the origami solving problem and to similar solving problems in
general.
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15. Ţepeneu, D., Ida, T., MathGridLink - A bridge between Mathematica and “the
Grid”, The 20th Annual Conference of Japan Society of Software Science and
Technology, Nagoya, September 2003.

16. Wu, W.t.: Basic principles of mechanical theorem proving in elementary geometries.
J. Automat. Reason. 2, 221−252 (1986).



Proving Geometric Theorems
by Partitioned-Parametric Gröbner Bases�
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Abstract. The notion of partitioned-parametric Gröbner bases of a
polynomial ideal under constraints is introduced and an algorithm for
constructing partitioned-parametric Gröbner bases is given; the correct-
ness and the termination of the algorithm are proved. We also present
a method based on computing partitioned-parametric Gröbner bases for
proving geometric theorems mechanically. By this method, besides prov-
ing the generic truth of a geometric theorem, we can give the necessary
and sufficient conditions on the free parameters for the theorem to be
true. An example for proving geometric theorems by the partitioned-
parametric Gröbner bases method is given.

1 Introduction

Many geometric statements can be formulated in terms of polynomial equations,
and such algebraic formulations usually involve a number of parameters. An im-
portant problem concerning proving geometric theorems is to determine whether
a geometric statement is valid under a specialization of parameters.

In detail, a geometric statement of equality-type consists of two parts: hy-
potheses and conclusion. Both hypotheses and conclusion can be expressed in
terms of polynomial equations in a number of free arbitrary coordinates u1, . . .,
um, which we call parameters, and a number of dependent coordinates x1, . . . , xn,
which we call variables. Typically, the hypotheses are composed of⎧⎨

⎩
h1(u1, . . . , um, x1, . . . , xn) = 0,

· · · · · ·
hr(u1, . . . , um, x1, . . . , xn) = 0,

(1)

where the h’s are polynomials over a ground field K. The conclusion is

g(u1, . . . , um, x1, . . . , xn) = 0, (2)

where g is a polynomial over K. The problem to be considered is:
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Find all the constraints, viewed as polynomial equations and inequations in u1,
. . . , um, such that (1) implies (2).

For most geometric theorems, the conclusion does not strictly follow from the
hypotheses; there are some so-called degenerate cases. Wu introduced the charac-
teristic set method to prove geometric theorems and the “non-degenerate” condi-
tions can be given automatically [12]. This method has been successfully used to
prove many difficult geometric theorems, and to discover new theorems [3, 4, 11].
The application of the Gröbner bases method to geometric theorem-proving has
been investigated in [3, 6, 10]. An algorithm based on Gröbner bases is presented
in [10] for deriving simplest degeneracy conditions for geometric theorems.

Inspired by the work in [7, 9], in particular, the notion of parametric Gröbner
bases in [7], in this paper we introduce the notion of partitioned-parametric
Gröbner bases and based on it a method for analyzing the parameters involved
in an algebraic formulation of a geometric statement. This method partitions
the parametric space into finitely many subsets defined by polynomial equations
and inequations (i.e., parametric constraints), and show clearly on which subsets
the statement is valid and on which it is invalid. In other wrods, the necessary
and sufficient conditions on the parameters for a geometric statement to be true
can be given by this method.

Recently, we found that Montes [8] also presented an algorithm for discussing
Gröbner bases with parameters.

In the next section, the method for checking the consistency of a polyno-
mial constraint is described. In Section 3, the notion of parametric partition of
a constrained polynomial set is introduced and an algorithm for constructing
the parametric partition is described. In Section 4, the notion of partitioned-
parametric Gröbner bases of an ideal under a constraint is introduced and an
algorithm for computing partitioned-parametric Gröbner bases is presented. In
Section 5, a partitioned-parametric Gröbner bases method for proving geometric
theorems is proposed and an example is given to show how to use this method
to prove geometric theorems mechanically.

2 Constraints over the Parameters

Let K be a computable field and E be an algebraically closed field containing K.
For simplification, let u = (u1, . . . , um), where u1, . . . , um are parameters. K[u]
denotes the polynomial ring K[u1, . . . , um].

A constraint is viewed as a set of polynomial equations and inequations over
parameters, denoted by

C = {c1 = 0, . . . , cs = 0, d1 	= 0, . . . , dt 	= 0}, ci, dj ∈ K[u], (3)

which is true or false, depending on values in E substituted for parameters
appearing in the constraint.

Let C be a constraint over the parameters; a set S(C) ⊂ Em is defined as

S(C) = {u′ ∈ Em|u′ satisfy the constraint C}.
Especially, S(C) = Em when C is the empty set.
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A constraint C is said to be consistent if S(C) is not an empty set.
A Gröbner bases algorithm or a characteristic set algorithm can be used for

checking the consistency of a constraint C of form (3).

– GB method: by introducing y1, . . . , yt, let d′j = djyj − 1, j = 1, . . . , t, and
C′ = {c1, . . . , cs, d

′
1, . . . , d

′
t} ⊂ K[u, y], where y = (y1, . . . , yt); then C is

consistent if and only if {1} is not the reduced Gröbner basis of C′.
– CS method: S(C) can be considered as a quasi-variety in Em. Whether

S(C) is an empty set can be detected by computing its projection [2]. More-
over, the methods of regular decomposition or irreducible decomposition of
S(C) can also be used to detect its consistency [11, 12].

For a polynomial constraint, the following proposition is obvious.

Proposition 1. If C is a constraint and p is a polynomial in K[u], then one
and only one of the following three cases should be satisfied:

(a) C ∪ {p 	= 0} is not consistent, which can be equally described as for each
u′ ∈ S(C), p(u′) = 0, i.e., p can be considered as a zero function under
S(C).

(b) C ∪ {p = 0} is not consistent, which can be equally described as for each
u′ ∈ S(C), p(u′) 	= 0, i.e., p as a function is nonzero on S(C).

(c) Both C ∪ {p = 0} and C ∪ {p 	= 0} are consistent.

3 Parametric Partition of a Constrained Polynomial Set

Let u = (u1, . . . , um) and x = (x1, . . . , xn). By K[u, x], we denote the polynomial
ring with indeterminates u and x over K. Let f be a polynomial in K[u, x] and
u′ be a specialization of u, and f(u′, x) denotes the polynomial obtained by
substituting u′ for u. Let F be a set of polynomials in K[u, x], and F (u′, x) be
the set of polynomials obtained by substituting u′ for u into the polynomials
in F .

In [5], some terminologies about polynomials have been introduced. We will
extend them to polynomials with parameters.

Definition 1. Let f be a nonzero polynomial in K[u, x], where f can be consid-
ered as a polynomial in K[u][x], and f =

∑
α aαxα, where aα ∈ K[u]. Let > be

a monomial order on x.

(a) The multidegree of f is

multideg(f) = max(α ∈ Zn
≥0 : aα 	= 0).

(b) The leading coefficient of f is

lc(f) = amultideg(f) ∈ K[u].

In particular, for f ∈ K[u], lc(f) = f .
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(c) The leading monomial of f is

lm(f) = xmultideg(f).

(d) The leading term of f is

lt(f) = lc(f)lm(f).

In paper [7], Kapur defined a constrained polynomial as a pair (C, f), where
C is a consistent constraint and f is a polynomial in K[u, x]. The constraint
polynomial (C, f) is unambiguous if lc(f)(u′) 	= 0, ∀u′ ∈ S(C).

In the following, we will extend constrained polynomial and unambiguous
polynomial to constrained polynomial set and unambiguous polynomial set.

Definition 2. A constrained polynomial set is a pair (C, F ), where C is a con-
sistent constraint over the parameters u, and F is a finite set of polynomials in
K[u, x]. A constrained polynomial set (C, F ) is an unambiguous polynomial set
if for all u′ in S(C) and for all f in F , lc(f)(u′) 	= 0.

For example, ({u1 − u2 = 0, u3 = 0, u1 	= 0, u2 	= 0}, {x1 − u1, 2u1u2x1 + 1}) and
({u1 = 0, u2 = 0}, {1}) are two unambiguous polynomial sets.

Now, we define the parametric partition of a constrained polynomial set.

Definition 3. A set {(C1, F1), . . . , (Cs, Fs)} of unambiguous polynomial sets is
a parametric partition of a constrained polynomial set (C, F ) if it satisfies the
following conditions:

(a) S(C1), . . . , S(Cs) is a partition of S(C), i.e.,
⋃s

i=1 S(Ci) = S(C) and S(Ci)∩
S(Cj) = ∅, for 1 ≤ i 	= j ≤ s;

(b) ∀u′ ∈ S(C), if u′ ∈ S(Ci) then Fi(u′, x) and F (u′, x) generate the same ideal
in K(u′)[x], where K(u′) is the field generated by u′ over K.

Let F be a polynomial set; the parametric partition of (∅, F ) will be called the
parametric partition of F .

Theorem 1. For any constrained polynomial set, there is an algorithm to com-
pute its parametric partition in finite steps.

Proof. Let (C, F ) be an arbitrary constraint polynomial set. First we will con-
sider the case where F consists of only one polynomial, i.e., suppose that F =
{f}. According to Proposition 1, we know that:

1. If C ∪ {lc(f) 	= 0} is not consistent, then lc(f) is zero on S(C); let f ′ =
f − lt(f). It is obvious that the parametric partition of (C, {f ′}) is exactly
the one of (C, {f}).

2. If C ∪ {lc(f) = 0} is not consistent, then lc(f) is nonzero on S(C), and
(C, {f}) is the parametric partition of itself.

3. Otherwise, both C ∪ {lc(f) = 0} and C ∪ {lc(f) 	= 0} are consistent; then
the union of {(C ∪ {lc(f) 	= 0}, {f})} and the parametric partition of (C ∪
{lc(f) = 0}, {f − lt(f)}) is the parametric partition of (C, {f}).
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Since f has a finite number of terms, the above process will terminate in finite
steps and the number of the unambiguous polynomial sets in the parametric
partition of (C, {f}) is also finite. It is easy to check that the above process will
give the parametric partition of (C, {f}).

If F has more than one polynomial, then suppose that F = {f1, . . . , fk−1, fk},
and that {(C1, F1), . . . , (Ct, Ft)} is a parametric partition of {f1, . . . , fk−1}. Let
{(Ci1, Fi1), . . . (Ciki ,Fi,ki )} be the parametric partition of (Ci, {fk}); it is easy to
check that (Cij , Fij ∪Fi) for i = 1, . . . , t, j = 1, . . . , ki is the parametric partition
of (C, F ).

For example, f = vxy + ux2 + x, g = uy2 + x2, F = {f, g}, assuming a
lexicographic order on terms defined by the variable order y > x. First, we
will construct the parametric partition of (∅, {f}), It is {(C1, {f}), (C2, {ux2 +
x}), (C3, {x})}, C1 = {v 	= 0}, C2 = {v = 0, u 	= 0}, C3 = {v = 0, u = 0}.
Then, we will construct the parametric partitions of (C1, {g}), (C2, {g}) and
(C3, {g}). The parametric partitions of (C1, {g}), (C2, {g}) and (C3, {g}) are
{({v 	= 0, u 	= 0}, {g}), ({v 	= 0, u = 0}, {x2})}, {(C2, {g})} and {(C3, {x2})}
respectively. The parametric partition of (∅, F ) will be {({v 	= 0, u 	= 0}, {f, g}),
({v 	= 0, u = 0}, {f, x2}), (C2, {ux2 + x, g}), (C3, {x, x2})}.

4 Partitioned-Parametric Gröbner Bases

Let F be a polynomial set and u′ be an element in E; we use IF to denote the
ideal generated by F in K[u, x]. Let

IF (u′, x) = {p | p can be written as f(u′, x)/g(u′), f ∈ IF , g ∈ K[u], g(u′) 	= 0};

it is easy to check that IF (u′, x) is an ideal in K(u′)[x].

Definition 4. Let (C, F ) be a constrained polynomial set; a parametric partition
(C1, G1), . . . , (Cs, Gs) of (C, F ) is called the (reduced) partitioned-parametric
Gröbner basis of the ideal IF under the constraint C if: ∀u′ ∈ S(C), if u′ ∈
S(Ci) then Gi(u′, x) is the (reduced) Gröbner basis of IF (u′, x).

The partitioned-parametric Gröbner basis of the ideal IF under constraint ∅ will
be called the partitioned-parametric Gröbner basis of the ideal IF .

Two important operations in Gröbner bases computation are that of com-
puting an S-polynomial of a pair of distinct polynomials and the remainder on
division of a polynomial by one polynomial list. Below we extend these two
notations to polynomials with parameters.

For a polynomial f in K[u, x], for example f = u3x+x2+1, for a lexicographic
order with u > x, the leading monomial will be u3x. u3x becomes 0 by specifying
u to 0, which is different from the leading monomial of f |u=0. We will define the
following S-polynomial in K(u)[x].
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Definition 5. Let f, g be two polynomials in K[u, x]. Suppose that multideg(f)
= α, multideg(g) = β, and let γ = (γ1, . . . , γn), γi = max(αi, βi). The S-
polynomial of f and g is the combination

spoly(f, g) =
xγ

lt(f)
· f − xγ

lt(g)
· g =

xγ · (f · lt(g) − g · lt(f))
lt(f) · lt(g)

,

which is in K(u)[x].

For example, f = vxy + ux2 + x, g = uy2 + x2, assuming a lexicographic order
on terms defined by the variable order y > x,

spoly(f, g) =
u2x2y + uxy − vx3

uv
.

Definition 6. We will write f̄F for the remainder on division of f ∈ K[u, x] by
the ordered s-tuple F = (f1, . . . , fs) ⊂ K[u, x]; f̄F can be written as

f̄F = f − a1f1

lc(f1)
− a2f2

lc(f2)
− · · · − asfs

lc(fs)
,

where a1, . . . , as are in K[u, x]. f
F

is a linear combination with coefficients in
K(u), of monomials, none of which is divisible by any of lm(f1), . . . , lm(fs).

For example, F = {vxy + ux2 + x, uy2 + x2} and f = vy2 + ux3y + y, assuming
a lexicographic order on terms defined by the variable order y > x. Then

f̄F =
vuy − v2x2 − u3x4 − u2x3

uv
.

Let f be a polynomial in K(u)[x]. We use num(f) to denote the numerator
of f ; num(f) is in K[u, x].

Theorem 2. The parametric partition {(C1, G1), . . . , (Cs, Gs)} of a constrained
polynomial set (C, F ) is the partitioned-parametric Gröbner basis of IF under

constraint C if and only if for each i, ∀f, g ∈ Gi, num(num(spoly(f, g))
Gi

) is a
zero polynomial on S(Ci).

Proof. Since f and g are in Gi, the denominator of spoly(f, g) is the product of
lc(f) and lc(g) by Definitions 5 and 6. The leading coefficients of the polynomials
in Gi will be nonzero on S(Ci), so that the denominator of spoly(f, g) will be

nonzero on S(Ci). For the same reason, the denominator of num(spoly(f, g))
Gi

is also nonzero on S(Ci).
By the definition of parametric partition, we know that for each u′ ∈ S(Ci),

Gi(u′, x) and F (u′, x) generate the same ideal in K(u′)[x]. By Buchberger’s S-
polynomial criterion of Gröbner bases [1], we know that for each u′ in S(Ci),
Gi(u′, x) is the Gröbner basis of IF (u′,x).
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Theorem 3. For any constrained polynomial set, there is an algorithm to com-
pute out its partitioned-parametric Gröbner basis in finite steps.

We give the algorithm first.

Algorithm: PPGB(C, F )
Input: (C, F ) is a constrained polynomial set;
Output: A partitioned-parametric Gröbner basis of (C, F ).
1. If F = {1} then return (C, F ).
2. Let (C1, F1, ), . . . , (Cs, Fs) be the parametric partition of (C, F ).
3. For each i, compute the partitioned-parametric Gröbner basis of (Ci, Fi).

– SP(Fi)={spoly(f, g)
Fi | for each pair f, g ∈ Fi}.

– If for each h in SP(Fi), for each u′ ∈ S(Ci), h(u′, x) is 0 as a polynomial
in K[u′, x], then (Ci, Fi) is a partitioned-parametric Gröbner basis of
(Ci, Fi).

– Otherwise, compute the partitioned-parametric Gröbner basis of (Ci, Fi

∪ SP(Fi)).
4. Return the union of the partitioned-parametric Gröbner bases of (Ci, Fi).

It should be noticed that the polynomials in SP(Fi) will be in K(u)[x], and
their denominators will be nonzero on S(Ci). These polynomials can be replaced
by their numerators which are in K[u, x].

Proof. The correctness of the algorithm is guaranteed by Theorem 2. Now we
prove that the algorithm terminates in finite steps. It is well known that Buch-
berger’s algorithm for computing Gröbner bases terminates in finite steps and
the reason is that during the loop of successive iterations through expanding
the original polynomial set with the nonzero remainders of S-polynomials, the
leading terms of the ever-increasing polynomial set form an ascending chain of
ideals. As for the partitioned-parametric case, it becomes a litter more compli-
cated. On the one hand, it is easy to see that the ascending chain of ideals does
also exist for the leading coefficients are certainly nonzero under corresponding
constraint. On the other hand, in step 2, (C1, F1), . . . , (Cs, Fs) is the parametric
partition of (C, F ), and s is a finite number. So the algorithm PPGB forms a
tree structure of unambiguous polynomial sets, and the two sides prove that
the length of the tree is finite and the node number of the same layer is finite
respectively. So the number of leaves, which are unambiguous polynomial sets,
is finite too. This proves the termination of the algorithm.

5 Proving Geometric Theorem by Partitioned-Parametric
Gröbner Bases

The following theorem can solve the radical ideal membership problem.

Theorem 4 (Radical Ideal Membership). Let F be a finite set of polyno-
mials in K[x] and g be a polynomial in K[x]. Then g is in the radical of the ideal
IF if and only if {1} is the reduced Gröbner basis of (F, gy − 1).

Proof. See [1, 5].
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We can extend the above theorem to the case of polynomial ideals involving
parameters to establish the following theorem, which can solve the parametric
radical ideal membership problem.

Theorem 5 (Parametric Radical Ideal Membership). Let h1, . . . , hr, g be
polynomials in K[u, x], G={(C1, G1), . . . , (Cs, Gs)} be the reduced partitioned-
parametric Gröbner basis of the ideal generated by h1, . . . , hr, gy − 1 under con-
straint C. Then ∀u′ ∈ S(Ci), g(u′, x) is in the radical of the ideal generated by
h1(u′, x), . . ., hr(u′, x) in K(u′)[x] if and only if Gi = {1}.

Proof. It is obvious according to the definition of partitioned-parametric
Gröbner bases and Theorem 4.

Based on the above theorem, we propose the following method to prove geometric
theorems mechanically.

For a geometric theorem, hypotheses can be expressed by a set of polynomial
equations: {h1 = 0, . . . , hr = 0}, and the conclusion can be expressed by a
polynomial equation: g = 0. The polynomials hi and g are in K[u, x], where the
u’s are parameters and x’s are variables. Generally the conclusion g = 0 does
not strictly follow from the hypotheses {h1 = 0, . . . , hr = 0}.

Let F = {h1, . . . , hr, gy − 1}, for any term order on x and y, and let

{(C1, G1), . . . , (Cr, Gr), (Cr+1, Gr+1), . . . , (Cs, Gs)}

be the reduced partitioned-parametric Gröbner basis of IF . Assume that Gi =
{1} for i = 1, . . . , r and Gi 	= {1} for i = r+1, . . . , s; then the geometric theorem
is true under the constraints C1, . . . , Cr and the geometric theorem is false under
the constraints Cr+1, . . . , Cs.

Consider the following example.

Example 1. The bisectors of the three angles of an arbitrary triangle, three-to-
three, intersect at four points. In other words, let the triangle be ΔABC, the
two bisectors of � A and � B intersect at point D. We need to show that CD is
the bisector of � C.

To simplify calculation, and without loss of generality, we take the coordinates
of the points as A(u1, 0), B(u2, 0), C(0, u3), D(x1, x2). The hypotheses of the
theorem are expressed as:

h1 = u3[x2
2 − (x1 − u1)2] − 2u1x2(x1 − u1) = 0 (DA is the bisector of � CAB)

h2 = u3[x2
2 − (x1 − u2)2] − 2u2x2(x1 − u2) = 0 (DB is the bisector of � ABC)

The conclusion to be proved is

g = [u1(x2 − u3) + u3x1][u3(x2 − u3) − u2x1]
+[u2(x2 − u3) + u3x1][u3(x2 − u3) − u1x1] = 0.

Compute the partitioned-parametric Gröbner basis of {h1, h2, gy − 1} with
respect to the graded lex order with tie broken by y > x2 > x1. Here u1, u2, u3
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Fig. 1. Three bisectors pass through the same point

are considered as parameters. The partitioned-parametric Gröbner basis is G =
(C1, G1), . . . , (C7, G7), where

C1 = {u1 = 0, u3 = 0}, G1 = {1};
C2 = {−u2 + u1 	= 0, u3 	= 0}, G2 = {1};
C3 = {u3 = 0,−u2 + u1 	= 0, u1 	= 0, u2 	= 0}, G3 = {1};
C4 = {u2 = 0, u3 = 0, u1 	= 0}, G4 = {1};
C5 = {u2

3 + u2
1 = 0,−u2 + u1 = 0, u3 	= 0}, G5 = {1};

C6 = {−u2 + u1 = 0, u3 = 0, u1 	= 0, u2 	= 0}, G6 = {x1 − u1, 1 + 2x2yu3
1};

C7 = {−u2 + u1 = 0, u2
3 + u2

1 	= 0, u3 	= 0},
G7 = {u3x

2
2 − u3x

2
1 + 2u3u1x1 − u3u

2
1 − 2u1x2x1 + 2u2

1x2,

2yu1u
3
3 + 2yu3u

3
1 − 2yu3

3x1 − 4yu1x2u
2
3 − 2u3x1yu2

1 − 4x2yu3
1

+ 2yu2
3x1x2 + 2x1x2yu2

1 − 1, 2u5
3yu1 + 2u3

3yu3
1 − 2u5

3yx1 − 2yu1x2u
4
3

− 2yu3
1x2u

2
3 + 2x1yu3u

4
1 − 4yu1u

3
3x

2
1 − 4yu3

1u3x
2
1 + 2u3

3yx3
1

+ 2u3yx3
1u

2
1 − u2

3 − 2u2
1 − u3x2 + 2u1x1}.

From this partitioned-parametric Gröbner basis G, one can see that the con-
clusion g = 0 can be deduced from the hypotheses h1 = 0, h2 = 0 if and only if
the free parameters u1, u2, u3 satisfy one of the constraints C1, . . . , C5. From

C2 = {−u2 + u1 	= 0, u3 	= 0}, G2 = {1},

we know that the theorem is generically true.

If the variety defined by the hypotheses of a geometric statement is reducible,
this method for proving the geometric theorem cannot determine if the conclu-
sion of the geometric statement is true on some components of the hypotheses.
For example, when the hypothesis is x2−u2 = 0 and the conclusion is x−u = 0,
the variety defined by x2 − u2 = 0 is reducible and there are 2 components: one
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is x − u = 0 and the other is x + u = 0. We cannot deduce that the conclusion
is true on the component x − u = 0 by our method.

6 Conclusion

In this paper, for any geometric theorem expressed as an algebraic formula-
tion which involves both parameters and variables, we present a method of
partitioned-parametric Gröbner bases to partition the parametric space to
finitely many subsets. We can give all the partitions of the parameter space
on which the geometric theorem is true.

Our partitioned-parametric Gröbner bases method comes from Kapur’s para-
metric Gröbner bases and has more advantages in the structure and expression.
The partitioned-parametric Gröbner bases can be applied for solving many prob-
lems about parametric polynomial systems, such as parametric ideal member-
ship, the number of solutions of a parametric polynomial equation system and
elimination of quantifier-blocks in algebraically closed fields.

We should thank Z. M. Li for helpful discussions.
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Symbolic Computatio 33(1-2), 183–208 (2002).
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Abstract. Some properties of inscribed polygons, i.e., such plane poly-
gons whose vertices lie on a circle, are investigated. Given an inscribed
polygon with the lengths of its sides, we explore the area and radius of
its circumcircle. We start with a triangle and a quadrangle and then we
will explore the case of a pentagon. All the computations are based on
results of commutative algebra especially on Gröbner bases method and
elimination of variables in a given ideal.

1 Introduction

Every student knows the formula of Heron for the area p of a triangle with given
lengths of sides a, b, c

p =
√

s(s − a)(s − b)(s − c), (1)

where s = (a + b + c)/2. This formula has its name after Heron of Alexandria
(cca. 60 B.C.) although it was likely known to Archimedes.

The formula of Brahmagupta (598 – about 665 A.D.) for the area p of a
convex quadrilateral with given lengths of sides a, b, c, d which is inscribed in a
circle

p =
√

(s − a)(s − b)(s − c)(s − d), (2)

where s = (a + b + c + d)/2, is a generalization of the Heron’s formula.
Since then no similar formulas for the area of an inscribed (or cyclic) n-gon

for n > 4, despite a great effort of mathematicians from all over the world,
appeared until 1994, when D. P. Robbins published the paper [12]. See also the
latest references [8, 16]. For almost 1400 years the formula for a cyclic pentagon
was missing. In the meantime some papers for special cyclic polygons appeared,
see [1, 5, 14]. The main reason why such a long time elapsed is a complexity of
such formulas.

In this paper we will find the formula for the area of cyclic pentagon using
purely computational methods based on results of computational commutative
algebra like Gröbner bases of ideals, elimination of variables and the theory of
automatic theorem proving, especially automatic derivation, see [3, 4, 10, 17]. We
will start with well-known cases for n = 3 and n = 4 and then carry on for n = 5.
All the computations were done on Intel Pentium 2.00GHz/1572MB RAM.

H. Hong and D. Wang (Eds.): ADG 2004, LNAI 3763, pp. 44–58, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Area of Polygons

If the vertices of a closed polygon have coordinates Ai = [xi, yi], then for the
signed area p of A1, A2, . . . , An

p =
1
2

n∑
i=1

∣∣∣∣ xi yi

xi+1 yi+1

∣∣∣∣ , (3)

see [2]. It it easy to verify, that (3) does not depend on choosing the coordinate
system.

The formula (3) enables us to express the area of an n-gon knowing the
coordinates of its vertices.

We can also express the area p of an n-gon A1A2 . . . An by means of all
(
n
2

)
mutual distances of its vertices. We will use the formula (4), which is due to
Nagy and Rédey [11].

Denote the square of the distance of vertices Ai, Aj by dij = |AiAj |2; then

16p2 =
n∑

i,j=1

∣∣∣∣ di,j di,j+1
di+1,j di+1,j+1

∣∣∣∣ . (4)

2.1 Formula of Heron

The well-known formula of Heron is a special case of (4). We will derive it by
computer.
A triangle ABC with sides a, b, c is given. Find the formula for the area p of ABC.

Choose the Cartesian coordinate system so that the coordinates of the vertices
of a triangle ABC are A = [0, 0], B = [c, 0], C = [x, y], see Fig. 1. We want to
express the area p of the triangle ABC by the lengths of its sides a = |BC|, b =
|CA|, c = |AB|. It is obvious that

|AC| = b ⇔ h1 : x2 + y2 − b2 = 0,
|BC| = a ⇔ h2 : (x − c)2 + y2 − a2 = 0,
p = area of ABC ⇔ h3 : p − 1

2cy = 0.

Fig. 1.
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Let us construct the ideal I = 〈x2 + y2 − b2, (x − c)2 + y2 − a2, p − 1
2cy〉 in the

ring R[a, b, c, x, y, p]. We are searching for a formula, which describes a relation
between the lengths of sides a, b, c of the triangle ABC and its area p. Such a
polynomial should belong into the elimination ideal I ∩R[a, b, c, p]. Eliminating
the variables x, y we obtain

16p2 = −a4 − b4 − c4 + 2a2b2 + 2a2c2 + 2b2c2, (5)

which is the well-known formula of Heron.
We see that the right-hand side of (5) is a symmetric polynomial in a2, b2, c2.

Let us denote the elementary symmetric functions of a2, b2, c2 by k = a2+b2+c2,
l = a2b2 + b2c2 + c2d2, m = a2b2c2 and let q = 16p2. Then (5) may be written
in the form

k2 − 4l + q = 0. (6)

To evaluate the circumradius r of a triangle with sides a, b, c we can proceed in
a similar way and obtain

s(k2 − 4l) + m = 0, (7)

where s = r2. From (6) and (7) we get the formula

qs − m = 0, (8)

which connects the area p with the circumradius r of ABC.

2.2 Formula of Staudt

We know, that lengths of four sides of a quadrilateral do not determine it. To
determine it, we need one more condition, e.g. the length of a diagonal. But
neither five conditions (four sides and a diagonal) is enough to determine a
quadrilateral uniquely. We will suppose, that in a quadrilateral all 6 distances
between its vertices are given and solve the next problem.

Let ABCD be a quadrilateral with the lengths of sides a, b, c, d and diagonals
e, f . Find the formula for the area p of the quadrilateral ABCD.

Choose the coordinate system so that the vertices of the quadrilateral ABCD
be A = [0, 0], B = [a, 0], C = [x, y], D = [u, v] and a = |AB|, b = |BC|, c =
|CD|, d = |DA|, e = |AC|, f = |BD|, see Fig. 2. We have the following relations:

|BC| = b ⇔ h1 : (x − a)2 + y2 − b2 = 0,
|CD| = c ⇔ h2 : (u − x)2 + (v − y)2 − c2 = 0,
|DA| = d ⇔ h3 : u2 + v2 − d2 = 0,
|AC| = e ⇔ h4 : x2 + y2 − e2 = 0,
|BD| = f ⇔ h5 : (u − a)2 + v2 − f2 = 0.

By (3) we get

p = area of ABCD ⇔ h6 : p − 1/2(ay + xv − yu) = 0.

We will eliminate variables x, y, u, v in the ideal I = 〈h1, h2, . . . , h6〉.
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Fig. 2.

In CoCoA1 we enter

Use R::= Q[xyuvpabcdef];
I:=Ideal((x-a)^2+y^2-b^2,(u-x)^2+(v-y)^2-c^2,u^2+v^2-d^2,x^2+y^2-
e^2,(u-a)^2+v^2-f^2,p-1/2(ay+xv-yu));
Elim(x..v,I);

We get four polynomials from which the following one is of our interest. After
simplification we get

16p2 = 4e2f2 − (a2 − b2 + c2 − d2)2. (9)

This formula, which is a special case of (4), was first published by Staudt [15].

Remark: Instead of the elimination of the variables x, y, u, v we can eliminate
variables x, y, u, v, p in the same ideal I. This leads to the so-called Euler’s four
points relation, see [6]:

a4c2 − a2b2c2 + a2c4− a2b2d2 + b4d2 − a2c2d2 − b2c2d2 + b2d4 + a2b2e2− a2c2e2−
b2d2e2 +c2d2e2−a2c2f2 +b2c2f2 +a2d2f2−b2d2f2−a2e2f2−b2e2f2−c2e2f2−
d2e2f2 + e4f2 + e2f4 = 0,

which expresses the mutual dependence of all six distances a, b, c, d, e, f between
four vertices of a quadrilateral. Euler’s four points relation follows from the
Cayley–Menger determinant, see [1], for the volume V of a tetrahedron with
edges of lengths a, b, c, d, e, f

288V 2 =

∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 b2 f2 a2

1 b2 0 c2 e2

1 f2 c2 0 d2

1 a2 e2 d2 0

∣∣∣∣∣∣∣∣∣∣
(10)

if we put V = 0. A comparison of the equation V = 0 with the equality which
we received in the elimination process above shows that both of the polynomials
are the same up to the constant factor 2.
1 Software CoCoA is freely distributed at http://cocoa.dima.unige.it
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2.3 Area of a Pentagon and Hexagon

Let us discover by computer the Nagy–Rédey formula (4) for n = 5 and n = 6.
Given a pentagon ABCDE in a plane, denote the sides and diagonals by

a = |AB|, b = |BC|, c = |CD|, d = |DE|, e = |EA|, i1 = |AC|, i2 = |AD|,
i3 = |BD|, i4 = |BE|, i5 = |CE|. Choose the Cartesian system of coordinates
so that A = [0, 0], B = [a, 0], C = [x, y], D = [u, v], E = [w, z], see Fig. 3. Then
the following relations hold:

|BC| = b ⇔ h1 : (x − a)2 + y2 − b2 = 0,
|CD| = c ⇔ h2 : (x − u)2 + (y − v)2 − c2 = 0,
|DE| = d ⇔ h3 : (u − w)2 + (v − z)2 − d2 = 0,
|EA| = e ⇔ h4 : w2 + z2 − e2 = 0,
|AC| = i1 ⇔ h5 : x2 + y2 − i21 = 0,
|AD| = i2 ⇔ h6 : u2 + v2 − i22 = 0,
|BD| = i3 ⇔ h7 : (u − a)2 + v2 − i23 = 0,
|BE| = i4 ⇔ h8 : (w − a)2 + z2 − i24 = 0,
|CE| = i5 ⇔ h9 : (x − w)2 + (y − z)2 − i25 = 0,

area of ABCDE = p ⇔ h10 : p = 1/2(ay + xv − uy + uz − vw).

The elimination of x, y, u, v, w, z in the ideal I = 〈h1, h2, . . . , h10〉 takes in CoCoA
9m 18s and there appears

16p2 = −(a4 + b4 + c4 + d4 + e4) + 2(a2b2 + b2c2 + c2d2 + d2e2 + e2a2) + 2(i21i
2
3 +

i22i
2
4 + i23i

2
5 + i24i

2
1 + i25i

2
2) − 2(a2i25 + b2i22 + c2i24 + d2i21 + e2i23),

which is the Nagy–Rédey formula (4) for n = 5. In a similar way we get the
following formula for a hexagon.

Denote a = |AB|, b = |BC|, c = |CD|, d = |DE|, e = |EF |, f = |FA|, i1
= |AC|, i2 = |AD|, i3 = |AE|, i4 = |BD|, i5 = |BE|, i6 = |BF |, i7 = |CE|, i8 =
|CF |, i9 = |DF |.

Fig. 3.
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Choosing the Cartesian system of coordinates so that A = [0, 0], B = [a, 0],
C = [x, y], D = [u, v], E = [w, z], F = [s, t], we express all distances b, c, d, e,
f, i1, i2, i3, i4, i5, i6, i7, i8, i9 by the coordinates a, c, y, u, v, w, z, s, t with the
area p of ABCDEF

p = 1/2(ay + xv − uy + uz − vw + wt − sz).

We will eliminate variables x, y, u, v, w, z, s, t. In 29m we get in Singular2 (to-
gether with 121 further polynomials)

16p2 = −(a4 + b4 + c4 +d4 +e4 +f4)+2(a2b2 + b2c2 + c2d2 +d2e2 +e2f2 +f2a2)
+ 2(i21i24 + i23i

2
4 + i22i

2
5 + i21i

2
6 + i23i

2
6 + i24i

2
7 − i26i

2
7 + i22i

2
8 + i25i

2
8 − i21i

2
9 + i23i

2
9 + i27i

2
9)−

2(a2i28 + b2i22 + c2i25 + d2i28 + e2i22 + f2i25),

which is the special case of (4) for n = 6.

3 Area of Cyclic Polygons

Now consider polygons which are inscribed in a circle. A polygon with vertices
on a circle is called inscribed or cyclic. We will use the results of the previous
paragraph to express the area of a cyclic n-gon for n = 3, 4, 5, which is given by
the lengths of its sides.

For n = 3 we get formula of Heron, for n = 4 we obtain the well-known
formula of Brahmagupta for the area of a convex cyclic quadrilateral. First we
will deal with cyclic quadrilaterals to show the essence of the technique. Then
we will derive the formula for the area of a cyclic pentagon.

We will use two basic methods to obtain the formulas for the area of a cyclic
polygon and in the end we compare a time consumption of these two attitudes.
Basically we can proceed in a coordinate way to introduce a Cartesian system
of coordinates and express that the vertices of a cyclic n-gon lie on a circle etc.,
using the formula (3) for the area of an n-gon.

The other method, say distance or coordinate-free method, consists in the use
of the Nagy–Rédey formula (4) and Ptolemy’s type conditions. We shall see that
the latter method is more effective.

3.1 Ptolemy’s Type Conditions

Given a quadrilateral ABCD with the lengths of sides a = |AB|, b = |BC|, c =
|CD|, d = |AD| and diagonals e = |BD|, f = |AC|, we will search for a necessary
and sufficient condition for the quadrilateral ABCD being cyclic. Denote the
coordinates of the circumcenter by O = [s, t] and the circumradius by r. In the
position and notation as in Fig. 2 we have:

r = |AS| ⇔ h1 : s2 + t2 − r2 = 0,
r = |BS| ⇔ h2 : (a − s)2 + t2 − r2 = 0,
r = |CS| ⇔ h3 : (x − s)2 + (y − t)2 − r2 = 0,

2 Software Singular is available at http://www.singular.uni-kl.de
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r = |DS| ⇔ h4 : (u − s)2 + (v − t)2 − r2 = 0,
b = |BC| ⇔ h5 : (a − x)2 + y2 − b2 = 0,
c = |CD| ⇔ h6 : (u − x)2 + (v − y)2 − c2 = 0,
d = |DA| ⇔ h7 : u2 + v2 − d2 = 0,
e = |AC| ⇔ h8 : x2 + y2 − e2 = 0,
f = |BD| ⇔ h9 : (u − a)2 + v2 − f2 = 0.

In the ideal I = 〈h1, h2, . . . , h9〉 we eliminate all the variables except a, b, c, d, e
to find out the length e as a function of a, b, c, d. Similarly we get the length of f.
For given lengths of sides a, b, c, d of a cyclic quadrilateral we obtain two lengths
of diagonals e, f, see Fig. 4. For a convex cyclic quadrilateral we get

e2(ab + cd) = (ac + bd)(ad + bc), f2(ad + bc) = (ac + bd)(ab + cd), (11)

and for a non-convex case

e2(−ab + cd) = (ac − bd)(ad − bc), f2(−ad + bc) = (ac − bd)(ab − cd). (12)

From (11) the Ptolemy’s condition

ef = ac + bd (13)

for a convex case follows. In a non-convex case from (12) we receive Ptolemy’s
conditions

ef = ac − bd or ef = −ac + bd. (14)

From (11) and (12) we get another interesting relations

e(ab + cd) = f(ad + bc) (15)

in a convex case and

e(ab − cd) = f(ad − bc) or e(ab − cd) = f(−ad + bc) (16)

for non-convex case. Later we will need such formulas to compute the area of a
cyclic pentagon. See [5], where relations between sides and diagonals of a cyclic
quadrilateral are discussed in detail.

Fig. 4. Cyclic quadrilaterals with the sides a, b, c, d — convex and non-convex cases
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It is easy to show that each of the conditions (13) and (14) is sufficient for a
quadrilateral ABCD being cyclic. Conversely we will show that the conditions
(13) and (14) are necessary as well. We enter

Use R::= Q[abcdefxyuvt];
I:=Ideal((x-a)^2+y^2-b^2,(u-x)^2+(v-y)^2-c^2,u^2+v^2-d^2,x^2
+y^2-e^2,(u-a)^2-v^2-f^2,-yu^2+x^2v+y^2v-yv^2+yua-xva,(ac-bd
-ef)(ac+bd-ef)(ac-bd+ef)(ac+bd+ef)t-1);
NF(1,I);

and get 0. We discovered and proved the Ptolemy’s theorem which reads [7]:

A quadrilateral with lengths of sides a, b, c, d and diagonals e, f is cyclic iff

(ac − bd − ef)(ac + bd − ef)(ac − bd + ef)(ac + bd + ef) = 0. (17)

Remarks:
1) Note that we had to add (and find) one more condition ac + bd + ef = 0.
2) The condition (17) can be expressed as, see [1], cf. (10)∣∣∣∣∣∣∣∣

0 b2 f2 a2

b2 0 c2 e2

f2 c2 0 d2

a2 e2 d2 0

∣∣∣∣∣∣∣∣ = 0. (18)

3) The conditions (15) and (16) are surprisingly also necessary and sufficient for
a quadrilateral ABCD being cyclic, see [13, 9].

3.2 Formula of Brahmagupta

Consider a cyclic quadrilateral ABCD with the sides a, b, c, d. Find the formula
of ABCD.

To discover the formula for the area of ABCD we will use both coordinate
and coordinate-free methods as mentioned above. The coordinate method is as
follows.

Choose the Cartesian coordinate system so that A = [r, 0], B = [x, y], C =
[u, v], D = [w, z] and place the origin into the center of the circumcircle with the
radius r, see Fig. 5. Then the following relations hold:

|AB| = a ⇔ h1 : (x − r)2 + y2 = a2,
|BC| = b ⇔ h2 : (x − u)2 + (y − v)2 = b2,
|CD| = c ⇔ h3 : (u − w)2 + (v − z)2 = c2,
|DA| = d ⇔ h4 : (r − w)2 + z2 = d2,
|OB| = r ⇔ h5 : x2 + y2 = r2,
|OC| = r ⇔ h6 : u2 + v2 = r2,
|OD| = r ⇔ h7 : w2 + z2 = r2.

By (3) for the area p of ABCD we have

p = area ofABCD ⇔ h8 : p = 1/2(ry + xv − uy + uz − vw − rz).
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Fig. 5.

The elimination of variables x, y, u, v, w, z, r in the ideal 〈h1, h2, . . . , h8〉 yields
one polynomial, which gives after the factorization two equations. The first one

16p2 = −(a4+b4+c4+d4)+2(a2b2+a2c2+a2d2+b2c2+b2d2+c2d2)+8abcd (19)

gives the well-known formula of Brahmagupta (2). The second equation

16p′2 = −(a4+b4+c4+d4)+2(a2b2+a2c2+a2d2+b2c2+b2d2+c2d2)−8abcd (20)

expresses the signed area p′ of a non-convex cyclic quadrilateral. We can arrive
at it from the formula (19) writing for example −c instead of c.

Remark: We should realize that all the derived formulas are necessary condi-
tions for the area p. For example for the choice a = 2, b = 1, c = 1, d = 1 we
get only one real solution for the convex quadrilateral (non-convex quadrilateral
obviously does not exist for these values).

By the elimination of variables x, y, u, v, w, z in the ideal 〈h1, h2, . . . , h7〉 we
get the circumradii r and r′ of a convex and non-convex cyclic quadrilateral
ABCD

16p2r2 = (ab+cd)(ac+bd)(ad+bc), 16p′2r′2 = (ab−cd)(−ac+bd)(ad−bc). (21)

Thus for the given lengths a, b, c, d (which fulfil the analog of the triangle inequal-
ity a+ b+ c > d, . . . , etc.) there exist at most two classes of cyclic quadrilaterals
with different radii and areas, see Fig. 4.

The second and more effective way to explore the area of a cyclic quadrilateral
consists in the distance method. To express the area p of a quadrangle ABCD
we will use the Staudt’s formula (9).

Consider both convex and non-convex cyclic quadrilaterals; then in accordance
with Ptolemy’s theorem relations ef = ac + bd for convex and ef = ac − bd
or ef = bd − ac for non-convex quadrilaterals hold. From (9) and Ptolemy’s
conditions above we immediately get, eliminating variables e, f , relations (19)
and (20) for convex and non-convex cases, see Fig. 4.
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Use R::=Q[abcdefp];
I:=Ideal(16p^2-4e^2f^2+(a^2-b^2+c^2-d^2)^2,(ac+bd-ef)(ac-bd-ef)
(ac-bd+ef));
Elim(e..f,I);

If we replace a2, b2, c2, d2 in both of the symmetric formulas (19) and (20) by
elementary symmetric functions k = a2 + b2 + c2 + d2, l = a2b2 + a2c2 + a2d2 +
b2c2 + b2d2 + c2d2, m = a2b2c2 + a2b2d2 + a2c2d2 + b2c2d2, n = a2b2c2d2, we get
the following formula (22), which involves both Brahmagupta’s relations (19)
and (20)

(k2 − 4l + q)2 − 64n = 0. (22)

Notice that if one of the sides a, b, c, d vanishes then n = 0 and (22) gives the
formula (6) of Heron.

To calculate the circumradius r we can choose unlike the coordinate method
the following way. A cyclic quadrilateral ABCD is divided by the diagonal e =
|AC| into two triangles ABC, CDA with the sides a, b, e and c, d, e respectively,
see Fig. 4. Both of the triangles have the same circumradius r as the quadrilateral
ABCD. In accordance with the formula (8) for the circumradius of a triangle
we eliminate the variable e from both equations, which leads to the formula for
the circumradius of a quadrilateral

[s(k2 − 4l) + m)]2 − n(8s − k)2 = 0, (23)

where k, l, m, n are elementary symmetric functions and s = r2. The following
formula connects s and q

(qs − m)2 − k2n = 0. (24)

Notice again that if n = 0 a quadrilateral becomes a triangle and we get the
formulas (7) and (8).

4 Area of a Cyclic Pentagon

Now we are ready to investigate the area and circumradius of a cyclic pentagon
with the sides a, b, c, d, e. We will proceed in a similar way as in the previous
paragraphs. At first we will use the coordinate method to compute the area
of a cyclic pentagon (Fig. 6). Choose the Cartesian coordinate system so that
the coordinates of the vertices of a cyclic pentagon ABCDE be A = [0, 0], B
= [a, 0], C = [x, y], D = [u, v], E = [w, z], and a = |AB|, b = |BC|, c = |CD|, d =
|DE|, e = |EA|. Let the coordinates of the circumcenter O be O = [s, t] with the
radius r. Then the following relations hold:

|BC| = b ⇔ h1 : (x − a)2 + y2 − b2 = 0,
|CD| = c ⇔ h2 : (u − x)2 + (v − y)2 − c2 = 0,
|DE| = d ⇔ h3 : (w − u)2 + (z − v)2 − d2 = 0,
|EA| = e ⇔ h4 : w2 + z2 − e2 = 0,
|OA| = r ⇔ h5 : s2 + t2 − r2 = 0,
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Fig. 6. Area of a cyclic pentagon — convex case

|OB| = r ⇔ h6 : (s − a)2 + t2 − r2 = 0,
|OC| = r ⇔ h7 : (x − s)2 + (y − t)2 − r2 = 0,
|OD| = r ⇔ h8 : (u − s)2 + (v − t)2 − r2 = 0,
|OE| = r ⇔ h9 : (w − s)2 + (z − t)2 − r2 = 0.

By (3) for the area p of ABCDE

p = area of ABCDE ⇔ h10 : p = 1/2(ay + xv − uy + uz − vw) holds.

We have 10 equations and we are to eliminate 9 variables x, y, u, v, w, z, s, t, r
in the ideal 〈h1, h2, . . . , h10〉. In 9 hours and 5 minutes in CoCoA we obtain
the polynomial equation of degree 14 in p with 6672 terms. The substitution of
elementary symmetric functions

k =
∑

a2, l =
∑

a2b2, m =
∑

a2b2c2, n =
∑

a2b2c2d2, o = a2b2c2d2e2

with q = 16p2 leads to the equation h = 0 which contains 153 terms and is still
too long to write. It is as follows

h ≡ q7 + q6(7k2 − 24l) + q5(21k4 − 144k2l + 240l2 + 16km− 192n) + · · ·+ = 0.

If we denote A = k2−4l+q, B = kA+8m, C = A2−64n, D = 128o and eliminate
k, l, m, n, o from h in 〈h, A, B, C, D〉 we get the formula in more compact form
with only 5 terms. We arrived at

Theorem 1 (Robbins). A cyclic pentagon with sides a, b, c, d, e and the area p
is given. Let q = 16p2 and A, B, C, D be as above. Then q satisfies the equation

B2C2 + C3q − 16B3D − 18BCDq − 27D2q2 = 0. (25)

The formula (25) can be considered as a generalization of the formulas of Heron
and Brahmagupta.

Now we will derive the formula (25) using coordinate-free method. We come out
from the Nagy–Rédey formula (4) for the area of a pentagon which is given by
the lengths of sides a, b, c, d, e and diagonals i1, i2, i3, i4, i5. In the position as in
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Fig. 6 we apply Ptolemy’s conditions on quadrilaterals ABCD, BCDE, CDEA,
DEAB and EABC

i1i3 = ac+bi2, i3i5 = bd+ci4, i5i2 = ce+di1, i2i4 = da+ei3, i4i1 = eb+ai5. (26)

The substitution (26) into the Nagy–Rédey formula (4) for a pentagon gives

16p2 = 2
∑

a2b2 −
∑

a4 + t, (27)

where
t = 4(abci2 + bcdi4 + cdei1 + deai3 + eabi5). (28)

Denoting k =
∑

a2 = a2 +b2 + · · · and l =
∑

a2b2 = a2b2 +a2c2 + · · · elementary
symmetric functions of a2, b2, c2, d2, e2 and q = 16p2 we can write (27) in the form

k2 − 4l + q = t. (29)

Thus to express the area 16p2 of ABCDE by means of a, b, c, d, e it suffices to
express t by a, b, c, d, e because the other parts do not depend on i1, i2, i3, i4, i5.
The elimination of i1, i2, i3, i4, i5 from t will need, besides Ptolemy’s conditions
(26), another relation holding between sides and diagonals in a cyclic pentagon.
The conditions (26) are namely dependent, and only three of them are indepen-
dent. The relations which we need to add are the same as in (15) and are as
follows

i1(ab + ci2)= i3(bc + ai2), i3(bc + di4)= i5(cd + bi4), i5(cd + ei1)= i2(ed + ci1),
i2(ed + ai3) = i4(ea + di3), i4(ea + bi5) = i1(ab + ei5). (30)

Elimination of i1, i2, i3, i4, i5 from the system of polynomials (26), (30) and (28)
is now feasible.

In 16m in CoCoA we obtain the polynomial F1(t, a, b, c, d, e) with 827 terms.
The substitution of elementary symmetric functions k, l, m, n, o into F1 gives the
polynomial F2(t, k, l, m, n, o) with 37 terms. The substitution A = t = k2 − 4l +
q, B = kt + 8m, C = t2 − 64n, D = 128o into F2 gives (25).

Up to now we explored the area of a convex cyclic pentagon. Let us consider a
non-convex cyclic pentagon with the same lengths of sides a, b, c, d, e, for example
that one in Fig. 7. Then the Ptolemy’s conditions give

i1i3 = ac− bi2, i3i5 = −bd+ ci4, i5i2 = ce+di1, i2i4 = da+ei3, i4i1 = −eb+ai5

and by (16) the following relations

i1(ab − ci2)= i3(bc− ai2), i3(bc − di4)= i5(−cd + bi4), i5(cd + ei1)= i2(de + ci1),
i2(de + ai3) = i4(ea + di3), i4(ea − bi5) = i1(−ab + ei5)

hold. Instead of (28) we get

t = −abci2 − bcdi4 + cdei1 + deai3 − eabi5. (31)

Replacing b by −b in the conditions above and (31) we get the same system of
equations as in the convex case. Thus the elimination of i1, i2, i3, i4, i5 from (31)
gives the same result. Similarly we proceed in other cases.

Now we summarize the main steps of the previous method.
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Fig. 7. Area of a cyclic pentagon — non-convex case

Cyclic Pentagon Area Algorithm:

1. Eliminate the lengths of diagonals i1, i2, i3, i4, i5 from the system (28), (26),
(30) to obtain a symmetric polynomial F1(t, a, b, c, d, e).

2. Express the polynomial F1(t, a, b, c, d, e) by the elementary symmetric func-
tions k, l, m, n, o to get a polynomial F2(t, k, l, m, n, o).

3. Eliminate t, k, l, m, n, o in the ideal 〈F2, A, B, C, D〉 to obtain the final poly-
nomial F3(q, A, B, C, D).

Remarks:
1) The polynomial (25) is of degree 7 in q = 16p2. This means that there exist
at most 7 cyclic pentagons with the given lengths of sides a, b, c, d, e.

2) The terms A, B, C in (25) have geometric meanings. A is the left-hand side
of (6), B fulfils the equation 8qs − B = 0 which is equivalent to (24) and C is
the left-hand side of the formula (22).

3) The formula (25) was published by D. P. Robbins in 1994, see [12]. His discov-
ery is based on the fact that the left-hand side of (25) is the discriminant of the
cubic polynomial x3 +2Bx2−Cqx+2Dq2. Why it is the case is still a mystery.

5 Radius of a Cyclic Pentagon

We will compute the circumradius r of a cyclic pentagon ABCDE with the
given sides a, b, c, d, e.

By the coordinate method, introducing the Cartesian coordinate system so
that A = [r, 0], B = [x, y], C = [u, v], D = [w, z], E = [s, t] and placing
the origin O into the circumcenter we get in 11m 5s, eliminating 8 variables
x, y, u, v, w, z, s, t, a polynomial G1(s, a, b, c, d, e) of degree 7 in s = r2 with 2992
terms. The substitution of elementary symmetric polynomials

k =
∑

a2, l =
∑

a2b2, m =
∑

a2b2c2, n =
∑

a2b2c2d2, o = a2b2c2d2e2

yields the polynomial G2(s, k, l, m, n, o) with 81 terms.
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The distance method is as follows. Divide a cyclic pentagon ABCDE into
three triangles ABC, ACD and ADE, see Fig. 6. It is clear that all these tri-
angles have the same circumcircle. By means of (7) we will eliminate common
diagonals i1, i2.

Use R::=Q[abcdei[1..5]s];
I:=Ideal(s((a^2+b^2+i[1]^2)^2-4(a^2b^2+a^2i[1]^2+b^2i[1]^2))+a^2b^2
i[1]^2,s((c^2+i[1]^2+i[2]^2)^2-4(c^2i[1]^2+c^2i[2]^2+i[1]^2i[2]^2))
+c^2i[1]^2i[2]^2,s((d^2+e^2+i[2]^2)^2-4(d^2e^2+d^2i[2]^2+e^2i[2]^2))
+d^2e^2i[2]^2);
Elim(i[1]..i[2],I);

In 17s in CoCoA we receive (32). We can state

Theorem 2. A pentagon with the sides a, b, c, d, e which is inscribed in the circle
with the radius r is given. Let s, k, l, m, n, o are as above. Then

s3[(s(k2 − 4l) + m)2 − n(8s − k)2]2 + os2Q + o2sP + o3 = 0 (32)

holds, where P, Q are polynomials in k, l, m, n.

To find the circumradius of a cyclic pentagon we can proceed in the following
way, whose main steps are as follows.

Cyclic Pentagon Radius Algorithm:

1. Divide a cyclic pentagon ABCDE into three triangles ABC, ACD, ADE and
write the respective formulas (7) for ABC, ACD, ADE.

2. Eliminate i1, i2 from the system of equations from the first step to obtain the
polynomial G1(s, a, b, c, d, e).

3. Eliminate a, b, c, d, e from the system of G1 and elementary symmetric poly-
nomials k =

∑
a2, l =

∑
a2b2, m =

∑
a2b2c2, n =

∑
a2b2c2d2, o = a2b2c2d2e2

to obtain a polynomial G2(s, k, l, m, n, o).

Remarks:
1) There exist at most 7 cyclic pentagons with different radii.

2) If we put o = 0 we get a quadrilateral and the formula (32) becomes (23).

6 Final Remarks

1. Two given algorithms Cyclic Pentagon Area Algorithm and Cyclic Pentagon
Radius Algorithm could serve as a tool for computing of the area and radius of
a cyclic n-gons for n ≥ 6.

2. By using this method two main problems occurred: (a) Still a big CPU time
spent for computations; (b) Finding appropriate expressions like A, B, C, D to
abbreviate the final polynomial.
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3. Consider an arbitrary cyclic (2n+1)-gon with the given sides a1, a2, . . . , a2n+1.
Then it is conjectured by Robbins [12] that there exist at most kn such (2n+1)-
gons with different areas and radii, where

kn =
n−1∑
j=0

(n − j)
(

2n + 1
j

)
, (33)

i.e., k1, k2, k3, . . . = 1, 7, 38, 187, 874, . . . . For (2n + 2)-gons with sides a1, a2, . . .,
a2n+2 there are at most 2kn such polygons with different areas and radii. This
conjecture is still open.

4. The formula which connects the area and radius of a cyclic pentagon of the
type (8), (24) is still missing.
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Symbolic Solution of a Piano Movers’ Problem
with Four Parameters�
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Abstract. This paper presents a symbolic solution to a piano movers’
problem with four parameters through investigating the positive defi-
niteness of an even polynomial of degree 8 and the feasibility of certain
inequality systems.

1 Introduction

Given an open subset U in n-dimensional space and two compact subsets C0
and C1 of U , where C1 is derived from C0 by a continuous motion, is it possible
to move C0 to C1 while remaining entirely inside U? This is the general form of
the piano movers’ problem. It is a basic problem in robot motion planing.
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Fig. 1. Robot motion problem and moving ladder problem

The Moving Ladder Problem is a special case of the piano movers’ problem. It
asks what is the longest ladder that can be moved around a right-angled hallway
of unit width. In [2] J.H. Davenport shows that for a straight, rigid ladder,
the answer is 2

√
2, which allows the ladder to just pivot around the corner at

an angle. For a smoothly-shaped ladder, the largest diameter is ≥ 2(1 +
√

2)
(see [4]).

There have been many different approaches to the piano movers’ problem in
the past (see, e.g., [5, 7, 9, 10, 3, 8]). Most worked to find real-time and numeric
solutions. In this paper, we discuss the following piano movers’ problem with
� This work is supported in part by NKBRSF-2004CB318003 and NNSFC-10471044.
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Fig. 2. The piano movers’ problem

four parameters: Given a 2D rectangle of length L and width r, and an L-shape
passage with a vertical passage of width a and a horizontal passage of width b, as
shown in Fig. 2, with L > a ≥ b > r, under what condition there is a continuous
collision-free path to move the rectangle through the L-shape passage?

We will construct a symbolic solution in the simplest form. By “symbolic
solution” we mean a system of inequalities in parameters L, r, a, b that performs
as a sufficient and necessary condition for existence of a continuous collision-free
path moving the piano through the passage. Our result is the following theorem.

Theorem 1. Let L, r, a, b be positive real numbers such that L > a ≥ b > r.
Then there is a continuous collision-free path for moving a rectangle of L × r
through the L-shape passage with widths a and b if and only if the following
inequality holds:

p5 = −a6 + 3a4L2 − 3a4b2 + a4r2 + 18a3bLr − 20a2L2r2 + 2a2b2r2 − 3a2L4

−3a2b4 − 21a2b2L2 + 36abL3r − 16abLr3 + 18ab3Lr + 16L2r4

−8L4r2 + b4r2 + L6 − b6 − 20b2L2r2 − 3b2L4 + 3b4L2 < 0.

The paper is organized as follows: In Section 2, we show that the piano movers’
problem is equivalent to finding a sufficient and necessary condition in terms of
L, r, a, b such that the following polynomial of degree 8 in x is positive definite:

g(x) = 4(a − r)x8 − 4(L − 2a − b + 2r)x6 − 2(3L − 3a − 3b + 4r)x4

−2(L − a − 2b + 2r)x2 + b − r > 0.

In Section 3, we give a quantifier-free solution to the positivity of g(x), in terms
of the list of signs of polynomial p5 mentioned in Theorem 1 and other four poly-
nomials p1, p2, p3, p4 in variables L, r, a, b. In Section 4 we reduce the obtained
sign lists through analyzing on the satisfiability of certain smaller systems of
inequalities, and give a proof to Theorem 1.

2 A Simple Model of the Piano Movers’ Problem

We choose a Cartesian coordinate system, as shown in Fig. 2, by taking the left-
bottom corner O of the L-shape passage as the origin, the related sides of the
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horizontal and vertical passages as x and y axes, respectively. Then the another
corner C of the passage is (a, b). Let Cr be the circle (x−a)2 +(y−b)2 = r2. For
any point P (x, y) on the circle Cr, draw the tangent line of Cr through P . Let
A, B be the intersection points of the tangent line with y and x axes, respectively.
If P (x, y) satisfies x < a, y < b, then A, B are on the positive parts of y and
x axes. It is obvious that a rectangle of length L and width r can be moved
through the passage if and only if the length of the segment AB constructed
through any point P (x, y) on Cr satisfying x < a, y < b is greater than L.

Suppose that A, B are points on the positive parts of y and x axes. Let AB = ρ
and � OBA = θ (0 < θ < π/2). Then the tangent line is

x

ρ cos θ
+

y

ρ sin θ
= 1,

and the distance from point C(a, b) to this tangent line is

r =
| a
ρ cos θ + b

ρ sin θ − 1|√
1

(ρ cos θ)2 + 1
(ρ sin θ)2

.

Since point C(a, b) and the origin O are in the different sides of the tangent line,
we have

a

ρ cos θ
+

b

ρ sin θ
> 1,

and therefore,

r =
a

ρ cos θ + b
ρ sin θ − 1√

1
(ρ cos θ)2 + 1

(ρ sin θ)2

= a sin θ + b cos θ − ρ sin θ cos θ.

So the relation of ρ and θ can be expressed in the following equation

ρ =
a sin θ + b cos θ − r

sin θ cos θ
.

This proves the following lemma.

Lemma 1. A rectangle of length L and width r can be moved through the L-
shape passage with a vertical passage of width a and a horizontal passage of width
b if and only if the following inequality

a sin θ + b cos θ − r

sin θ cos θ
− L > 0

holds for all θ (0 < θ < π/2).

By substituting

cos θ =
1 − t2

1 + t2
, sin θ =

2t

1 + t2
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into Lemma 1 we can transform the sufficient and necessary condition into the
following quantifier formula

∀t(0 < t < 1 =⇒ 2at(1 − t2) + b(1 − t4) − r(1 + t2)2 − 2Lt(1 − t2) + 4at3 > 0).

Using variable substitution t = x2/(1 + x2) this formula can be simplified to the
following one:

∀x (g(L, r, a, b, x) > 0),

where

g(L, r, a, b, x) = 4(a − r)x8 − 4(L − 2a − b + 2r)x6 − 2(3L − 3a − 3b + 4r)x4

−2(L − a − 2b + 2r)x2 + b − r.

This leads to the following result.

Lemma 2. A rectangle of length L and width r can be moved through the L-
shape passage with a vertical passage of width a and a horizontal passage of width
b if and only if the polynomial G(x) := g(L, r, a, b, x) is positive definite.

According to the continuous dependence of polynomials upon their coefficients,
we know that if G(x) = g(L, r, a, b, x) is positive definite, then there exists a
neighborhood U ⊂ R4 of (L, r, a, b) such that g(L′, r′, a′, b′, x) is also positive
definite for any parameters L′, r′, a′, b′ ∈ U . This meets the requirement of
collision-free path.

3 Quantifier Elimination Using Discriminants

Regarding G(x) as a univariate polynomial in x with parameters L, r, a, b, our
goal is to establish the necessary and sufficient condition in terms of L, r, a, b
such that G(x) is positive for all x ∈ R. It is clear that any polynomial

F (x) = a0x
n + a1x

n−1 + · · · + an−1x + an

is positive definite if and only if F (x) has no real root, with F (0) = an > 0.
Quantifier elimination methods ([1]) provide a standard tool to build such

kind of conditions. D. Wang [11] used the package QEPCAD based on quantifier
elimination and cylindrical algebraic decomposition to solve Davenport’s moving
ladder problem in 1990. For the piano movers’ problem with four parameters,
one of the referees pointed out that the same result as in Theorem 1 can also be
obtained by using H. Hong’s improved package QEPCAD B (version 1.44) [6] with
appropriate memory management in Saclib. In this paper we shall use an ex-
plicit criterion for root-classification of a polynomial with symbolic coefficients,
given in [12], to express the condition into a system of polynomial inequalities
in variables a0, a1, . . . , an−1, an. While the problem can also be solved by a pro-
gram in an automatic mode, we take here a much more “readable” argument to
explain every step in detail. In order to state the explicit criterion the following
definitions and notations are needed.
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Definition 1 (Discrimination Matrix). Given a polynomial

F (x) = a0x
n + a1x

n−1 + · · · + an−1x + an

with general symbolic coefficients, the following 2n × 2n matrix⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 · · · an

0 na0 (n − 1)a1 · · · an−1
a0 a1 · · · an−1 an

0 na0 · · · 2 an−2 an−1
· · · · · ·
· · · · · ·

a0 a1 · · · an

0 na0 · · · an−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is called the discrimination matrix of F (x), and denoted by Discr(F ).

Definition 2 (Discriminant Sequence). Let F (x) be a polynomial of degree n
and Discr(F ) its discrimination matrix. By dk or dk(F ) denote the determinant
of the submatrix of Discr(F ), formed by the first k rows and the first k columns,
for k = 1, . . . , 2 n. Let Dk = d 2k for k = 1, . . . , n. We call the n-tuple

{D1, D2, . . . , Dn}

the discriminant sequence of the polynomial F (x).

Definition 3 (Sign List and Revised Sign List). Let sgn(·) be the sign
function and r1, r2, . . . , rn be any sequence of real numbers with r1 	= 0. Let
si = sgn(ri), i = 1, 2, . . . , n. Call [s1, s2, . . . , sn] the sign list of r1, r2, . . . , rn.
Let [ε1, ε2, . . . , εn] be a list constructed according to the following rules:

1. If si 	= 0, then εi = si;
2. If si 	= 0, si+1 = · · · = si+j−1 = 0, si+j 	= 0, then εi+r = (−1)(r+1)/2 · si

for r = 1, . . . , j − 1, that is, replace the sub-sequence sj+1, . . . , si+j−1 by
−si, −si, si, si, −si, −si, si, si, −si, . . ., with keeping the number of terms;

3. If si 	= 0, si+1 = 0, . . . , sn = 0, then εk = sk for k = i, i + 1, . . . , n.

Call [ε1, ε2, . . . , εn] the revised sign list of r1, r2, . . . , rn.

The following result [12] can be used to decide the number of the distinct real
or imaginary roots of a univariate polynomial with symbolic coefficients. It is
a generalization of the classical approach of Riquier and Sturm for polynomials
with real coefficients.

Theorem 2. Given a polynomial

F (x) = a0x
n + a1x

n−1 + · · · + an

with real coefficients, if the number of the sign changes of the revised sign list
of the discriminant sequence {D1, D2, . . . , Dn} of F (x) is ν, then the number of
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the pairs of distinct conjugate imaginary roots of F (x) equals ν. Furthermore,
if the number of non-vanishing terms of the revised sign list is l, then so is the
number of the distinct roots of F (x), and hence the number of the distinct real
roots of F (x) equals l − 2 ν.

In particular, for the polynomial G(x) = g(L, r, a, b, x) related to the piano
movers’ problem, the corresponding discriminant sequence {D1, D2, . . . , D8} can
be written in the following form:

D1 = 128(a− r)2, D2 = 4096(a− r)3 · p1,

D3 = −32768(a− r)3 · p0 · p1, D4 = −524288(a− r)3 · p0 · p2,

D5 = −8388608(a− r)3 · p2 · p3, D6 = 67108864(a− r)3 · p3 · p4,

D7 = −268435456(a− r)3 · p4 · p5, D8 = 1073741824(a− r)3(b − r) · p2
5,

where p5 is as in Theorem 1, and p0, p1, . . . , p4 are as follows

p0 = −4 a r − 3 L2 − 3 b2 + 6 b L + 4 r2,

p1 = −2 a − b + L + 2 r,

p2 = 3 a2L + 3 a2b + 2 a2r − 11 aLr − abr − 6 ar2 + 3 ab2 − 3 abL + 4 r3

− 2 br2 + 8 Lr2 − 9 b2L + 5 bLr − L2r − 4 b2r − 3 L3 + 9 bL2 + 3 b3,

p3 = 2 a3r + 3 a2b2 + 12 a2bL + 2 a2r2 + 3 a2L2 − 18 abLr − 16 aL2r

− 2 ab2r + 3 b4 − 6 b3L − 2 b2r2 + 8 bLr2 + 6 bL3 + 12 L2r2 − 3 L4,

p4 = 6 b3ra − 13 L2ab2 + 12 Lab3 + 4 r3Lb − 8 r3aL − 4 r3ab + 5 L2a2r

− 5 L2a2b − 12 L2r2b − 36 L2r2a − 17 b2a2L + 5 b2a2r − 21 b2r2L

+ 19 L3rb + 6 L3ab − 6 a3Lb + 6 ra3L + 6 ra3b − 5 r2a2L − b3rL

+ b2r2a − L4a − 14 L2rb2 − 6 L3ra + 8 r4L − 4 b4a − 3 r2a3 + 4 b3r2

− 2 b2r3 − 5 b2a3 − 7 b3a2 − a4L + 2 L2a3 + 2 L3a2 + 2 r3a2 + 2 L3r2

− 2a4b + 2ra4 + 28L2r3 − L5 − 5b5 − 2b3L2 + 11b4L + 3b4r − 10L3b2

+ 7 L4b − 7 L4r − a5 + 24 L2bra + 38 ra2Lb − 34 r2Lab + 30 Lb2ra.

Observed that from L > a ≥ b > r, we have a − r > 0, b − r > 0 and

p0 = −4 r(a − r) − 3(L − b)2 < 0.

Thus, the revised sign list of the discriminant {D1, D2, . . . , D8} is equal to that
of the following polynomial sequence

DS = {1, p1, p1, p2,−p2p3, p3p4,−p4p5, p
2
5}.

By V (r1, r2, . . . , rn) denote the sign changes of the revised sign list of r1, r2, . . . , rn,
a given sequence of real numbers. Then V (D1, D2, . . . , D8) = V (DS).

Let PS = {p1, p2, p3, p4, p5}. Then each sign list of PS decides a sign list of
DS. Using Theorem 2 we can construct the following solution to the quantifier
elimination problem ∀x (G(x) > 0).
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Theorem 3. Let G(x) = g(L, r, a, b, x) and p1, p2, . . . , p5 be the polynomials
in PS. Then G(x) > 0 for all x ∈ R if and only if the sign list [s1, s2, s3] of
p1, p2, p3 and the sign list [s4, s5] of p4, p5 belong to one of the 116 cases shown
in the Table 1.

Table 1. The sign lists of p1, p2, p3 andp4, p5 that satisfy ∀x (G(x) > 0) (the meaning
of the subscript of the sign lists will be explained later)

[s1, s2, s3] [s4, s5]
[-1,-1,-1] [-1,-1]
[-1,-1, 0] [-1,-1],[0,-1]12,[0,1]8, [1,1]8

[-1,-1, 1] [-1,-1],[-1,0]9,[-1,1]7,[0,-1]12,[0,1]7,[1,1]7

[-1,0,-1]5 [-1,-1],[0,-1]12,[0,1], [1,-1]11,[1,0]10,[1,1]
[-1,0, 0] [-1,-1],[-1,1]8,[0,-1]12,[0,1]8,[1,-1]11,[1,1]8

[-1,0, 1] [-1,-1],[-1,0]9,[-1,1]7,[0,-1]12,[0,1]7,[1,1]7

[-1,1,-1]4 [-1,-1],[0,-1]12,[0,1], [1,-1]11,[1,0]10,[1,1]

[-1,1, 0]6
[-1,-1],[-1,0],[-1,1]8,[0,-1]12,[0,0],[0,1]8,
[1,-1]11, [1,0]10, [1,1]8

[-1,1, 1] [-1,-1],[-1,0]9,[-1,1]7,[0,-1]12,[0,1]7,[1,-1]11

[0,-1,-1] [-1,-1]
[0,-1, 0] [-1,-1],[0,-1]12,[0,1]8, [1,1]8

[0,-1, 1] [-1,-1],[-1,0]9,[-1,1]7,[0,-1]12,[0,1]7,[1,1]7

[0,0,-1]5 [-1,-1],[0,-1]12,[0,1], [1,-1]11,[1,0]10,[1,1]
[0,0, 0] [-1,-1],[-1,1]8,[0,-1]12,[0,1]8,[1,-1]11,[1,1]8

[0,0, 1] [-1,-1],[-1,0]9,[-1,1]7,[0,-1]12,[0,1]7,[1,1]7

[0,1,-1]2,4 [-1,-1],[0,-1]12,[0,1], [1,-1]11,[1,0]10,[1,1]

[0,1, 0]2,6
[-1,-1],[-1,0],[-1,1]8,[0,-1]12,[0,0],[0,1]8,
[1,-1]11, [1,0]10, [1,1]8

[0,1, 1]2 [-1,-1],[-1,0]9,[-1,1]7,[0,-1]12,[0,1]7,[1,-1]11

[1,-1,-1] [-1,-1]
[1,-1, 0] [-1,-1],[0,-1]12,[0,1]8, [1,1]8

[1,-1, 1] [-1,-1],[-1,0]9,[-1,1]7,[0,-1]12,[0,1]7,[1,1]7

[1,0,-1]3,5 [-1,-1]
[1,0, 0]3 [-1,-1],[1,1]8

[1,0, 1]3 [1,1]
[1,1,1]1 [1,1]

Proof. Since G(x) is an even polynomial and G(0) = b− r > 0, the discriminant
sequence can be classified into the following 4 cases according to Theorem 2.

C1. D8 	= 0: in this case, G(x) has no real roots if and only if V (D1, . . . , D8) = 4.
C2. D6 	= 0, D7 = D8 = 0: in this case, G(x) has no real roots if and only if

V (D1, . . . , D8) = 3.
C3. D4 	= 0, D5 = · · · = D8 = 0: in this case, G(x) has no real roots if and only

if V (D1, . . . , D8) = 2.
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C4. D2 	= 0, D3 = · · · = D8 = 0: in this case, G(x) has no real roots if and only
if V (D1, . . . , D8) = 1.

Let
Σk = {[s1, . . . , sk] | s1, . . . , sk ∈ {−1, 0, 1}}, k ∈ N,

and

μ : Σ5 → Σ8, [s1, s2, s3, s4, s5] �→ [ 1, s1, s1, s2,−s2s3, s3s4,−s4s5, s
2
5 ].

Then for any sign list σ ∈ Σ5, a specification of L, r, a, b with 0 < r < b ≤ a < L
and

[ sgn(p1(L, r, a, b)), . . . , sgn(p5(L, r, a, b)) ] = σ

satisfies ∀x (G(x)= g(x, L, r, a, b) > 0) if and only if the corresponding sign list
μ(σ) = [m1, m2, . . . , m8] satisfies one of the following 4 cases:

(C1) : m8 	= 0, V (m1, m2, . . . , m8) = 4;
(C2) : m6 	= 0, m7 = m8 = 0, V (m1, m2, . . . , m8) = 3;
(C3) : m4 	= 0, m5 = · · · = m8 = 0, V (m1, m2, . . . , m8) = 2;
(C4) : m2 	= 0, m3 = · · · = m8 = 0, V (m1, m2, . . . , m8) = 1.

It is easy but tedious to check that among all the 35 = 243 lists contained in
Σ5, there are 116 cases that satisfy condition (C1) to (C4), as listed in Table 1.

4 Simplifying the Quantifier-Free Formula

For any sign list σ = [s1, s2, . . . , s5] ∈ Σ5, we define a system of inequalities
Q1, Q2, . . . , Q5 as follows:

Qi =

⎧⎪⎨
⎪⎩

pi < 0, if si = −1,

pi = 0, if si = 0,

pi > 0, if si = 1,

where i = 1, . . . , 5. A list σ is said to be feasible if the corresponding system
Q1, Q2, . . . , Q5 is satisfiable, i.e., there exist L, r, a, b such that 0 < r < b ≤ a < L
and

[ sgn(p1(L, r, a, b)), . . . , sgn(p5(L, r, a, b)) ] = σ.

In this section, we show that there are more than 100 infeasible cases in Table 1
so that the necessary and sufficient condition for the piano movers’ problem can
be significantly simplified. The key is the following Lemma 3.

Lemma 3. Let p1, p2, . . . , p5 be the polynomials in PS. Then the following re-
lations hold:

(1) p1 ≥ 0 =⇒ p2 ≤ 0,

(2) p2 ≥ 0 =⇒ p1 ≤ 0,
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(3) p2 ≥ 0 =⇒ p3 ≥ 0,

(4) p3 ≤ 0 =⇒ p2 ≤ 0,

(5) p3 ≥ 0 =⇒ p5 ≤ 0,

(6) p5 ≥ 0 =⇒ p3 ≤ 0,

(7) p5 ≤ 0 =⇒ p4 ≤ 0,

(8) p4 ≥ 0 =⇒ p5 ≥ 0.

This lemma can be proved by a simplified cylindrical algebraic decomposition
described in [13]. Actually, we used a Maple program BOTTEMA (see [13]) for es-
tablishing the results in Lemma 3. BOTTEMA can prove automatically an extensive
class of inequalities whereof the conclusions are of type ≥ or ≤.

Although we can establish more implication relations by further investigation,
it is enough now to give a proof to Theorem 1.

Proof (of Theorem 1). In view of Lemma 3, any sign list [s1, . . . , s5] which falls
into one of the following 12 types is not feasible:

(T1) : [1,1,u,v,w], (T2) : [0,1,u,v,w], (T3) : [1,0,u,v,w],
(T4) : [u,1,-1,v,w], (T5) : [u,0,-1,v,w], (T6) : [u,1,0,v,w],
(T7) : [u,v,1,w,1], (T8) : [u,v,0,w,1], (T9) : [u,v,1,w,0],
(T10) : [u,v,w,1,0], (T11) : [u,v,w,1,-1], (T12) : [u,v,w,0,-1],

where u,v,w ∈ {-1, 0, 1}. We have marked these types with subscript numbers
in Table 1. It is easy to see that all possibly feasible sign lists in Table 1 are the
followings ones (grouped into three categories):

(G1) : [-1,1,1,-1,-1];

(G2) : [-1,0,0,-1,-1], [0,0,0,-1,-1],

[-1,0,1,-1,-1], [0,0,1,-1,-1];

(G3) : [-1,-1,-1,-1,-1], [-1,-1,0,-1,-1], [-1,-1,1,-1,-1],

[0,-1,-1,-1,-1], [0,-1,0,-1,-1], [0,-1,1,-1,-1],

[1,-1,-1,-1,-1], [1,-1,0,-1,-1], [1,-1,1,-1,-1].

According to the map from sign list to inequality system, the sign list in (G1)
represents the following inequality system:

p1 < 0, p2 > 0, p3 > 0, p4 < 0, p5 < 0.

The four inequality systems decided by sign lists in (G2) can be simplified to

p1 ≤ 0, p2 = 0, p3 ≥ 0, p4 < 0, p5 < 0

in the following scheme:

p1 < 0, p3 > 0, I1

p1 = 0, p3 > 0, I1

}
=⇒ p1 ≤ 0, p3 > 0, I1

p1 < 0, p3 = 0, I1

p1 = 0, p3 = 0, I1

}
=⇒ p1 ≤ 0, p3 = 0, I1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ =⇒ p1 ≤ 0, p3 ≥ 0, I1,
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where I1 stands for p2 = 0, p4 < 0, p5 < 0 for short. In a similar way, the
inequality systems related to the 9 sign lists in (G3) can be simplified to

p2 < 0, p4 < 0, p5 < 0.

The following is the simplification procedure:

p1 < 0, p3 < 0, I2

p1 < 0, p3 = 0, I2

p1 < 0, p3 > 0, I2

⎫⎪⎬
⎪⎭ =⇒ p1 < 0, I2

p1 = 0, p3 < 0, I2

p1 = 0, p3 = 0, I2

p1 = 0, p3 > 0, I2

⎫⎪⎬
⎪⎭ =⇒ p1 = 0, I2

p1 > 0, p3 < 0, I2

p1 > 0, p3 = 0, I2

p1 > 0, p3 > 0, I2

⎫⎪⎬
⎪⎭ =⇒ p1 > 0, I2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=⇒ I2,

where I2 stands for p2 < 0, p4 < 0, p5 < 0.
We have reduced the inequalities corresponding to the possibly feasible sign

lists in Table 1 to the following three:

(1) : p1 < 0, p2 > 0, p3 > 0, p4 < 0, p5 < 0;
(2) : p1 ≤ 0, p2 = 0, p3 ≥ 0, p4 < 0, p5 < 0;
(3) : p2 < 0, p4 < 0, p5 < 0.

This gives a necessary and sufficient condition for G(x) = g(L, r, a, b, x) to be
positive definite under the assumption 0 < r < b ≤ a < L. Thus, if 0 < r < b ≤
a < L and G(x) is positive definite, then p5 < 0 is always true.

The following deduction diagram shows that if L > a ≥ b > r > 0 and p5 < 0,
then one of the three systems of inequalities above must hold, and therefore G(x)
is positive definite.

p5 < 0

p5 < 0 −8=⇒ p4 < 0
−−−−−−−−
p4 < 0, p5 < 0
p2 < 0 ∨ p2 < 0 ∨ p2 = 0
−−−−−−−−−−−
(p2 > 0, p4 < 0, p5 < 0) ∨ (p2 < 0, p4 < 0, p5 < 0) ∨ (p2 = 0, p4 < 0, p5 < 0)

p2 > 0
−1,−4
=⇒ p1 < 0, p3 > 0 p2 = 0

2,3
=⇒ p1 ≤ 0, p3 ≥ 0

−−−−−−−−−− −−−−−− −−−− −−−−−−−−−−
(p1 < 0, p2 ≥ 0, p3 > 0, p4 < 0, p5 < 0) ∨ (p2 < 0, p4 < 0, p5 < 0)

∨ (p1 ≤ 0, p2 = 0, p3 ≥ 0, p4 < 0, p5 < 0),
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where −8=⇒ means the converse-negative proposition of statement (8) in Lemma 3,
and

2,3
=⇒ the statements (2), (3) in Lemma 3. Theorem 1 is proved.
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Computing Curves Bounding Trigonometric
Planar Maps: Symbolic and Hybrid Methods
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Abstract. A few years ago S-H Kim investigated some problems at the
boundary of number theory, optimization, and geometry. One question
regarded an optimal packing of certain “triangular oval” planar curves
and another looked at some related transformations of R

2 to R
2. These

were investigated primarily using tools from calculus but it turns out
that computational algebra methods may instead be employed to partic-
ular advantage. Moreover, generalizations that are beyond the reach of
such methods are still amenable to hybrid approaches using numeric and
symbolic methods in tandem. We introduce some of the specific problems
and generalizations, and show by detailed example how such techniques
may be implemented and deployed.

1 Introduction and Overview

A common need in two and three dimensional computational geometry is to
bound regions given by algebraic maps. For example, while it is typically easy
to find the implicit form of a curve given parametrically by rational functions
of a variable (or trigonometric functions, as discussed at length in [10]), it is
not so well understood how to find boundary curves of maps between planar
regions. Perhaps more to the point, known symbolic methods already become
overwhelmed by complexity in examples of modest size. Hence there is a desire to
find methods less prone to the vagaries of intermediate swell and related pitfalls
of symbolic computation.

What we develop will fall into the category of computational methods. We
cite theory when relevant but do not purport to develop any herein. That said,
the hybrid methods to be presented draw from several areas of numeric and
symbolic computation (optimization, differential equation solvers, linear algebra,
lattice methods, and more), and illustrate nicely the advantages of such synergy.
Moreover, as will be seen from the family of examples we study, these methods
can then be applied to the study of mathematical problems.

In particular, we will investigate certain properties of trigonometric planar
mappings of the form

x = cos(ma) + cos(mb) + cos(m(a − b))
y = cos(na) + cos(nb) + cos(n(a − b))

for fixed integers m and n. We begin with a history and analysis of a particular
simple case, illustrating symbolic methods that have been presented in previous

H. Hong and D. Wang (Eds.): ADG 2004, LNAI 3763, pp. 70–91, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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venues. We proceed to develop a hybrid approach that applies when the symbolic
methods are no longer up to the task.

We remark that similar maps e.g. replacing cosine with sine are also of interest
and can be addressed using the same methods we will develop.

2 Background of the Problems Under Consideration

We begin with a quick review of material presented in [18], based in part on
[12, 14]. Given

f(n) = Min
ajεR

Max

⎡
⎣
∣∣∣∣∣∣

n∑
j=1

eiaj

∣∣∣∣∣∣ ,
∣∣∣∣∣∣

n∑
j=1

einaj

∣∣∣∣∣∣
⎤
⎦

We want to say something useful about this function f(n).

Theorem (paraphrased).
(i) f(1) = 1.
(ii) f(2) = 1.
(iii) For n > 3 we have f(n) = 0.

Proofs are in [13] and [14]. One might be tempted to state, as a corollary,
that the only case of interest is when n = 3. We will see presently why this is
not so. First we discuss the case n = 3, which was of interest in Kim’s work and
also lays the groundwork for the more difficult problems we will attack.

Proposition. For f(3) = Min
a,b∈[0,2π]

Max[|1 + eia + eib|, |1 + e3ia + e3ib|] the two

moduli are equal.

Theorem. f(3) occurs at a tangential intersection of the curves

cos(a) + cos(b) + cos(a − b) = k

cos(3a) + cos(3b) + cos(3(a − b)) = k

for values {a, b, k}. [These new functions are half of (the squares of the moduli
−3). Once we find k, we recover f(3) as

√
2k + 3.] Moreover at extremal values of

f(3) there will be only finitely many such intersection points, up to periodicity.

Proofs again are in [13, 14]. The utility of this theorem is that it points the
way to an algorithm because there are only finitely many values of k for which
the intersections will be tangential, and we will see shortly how to find them via
elimination theory.

In the theorem above we have parametrized pairs of trigonometric polynomials
associated to pairs of moduli of exponential sums. As we seek a minmax it is
not surprising that this would occur at parameter values that give tangential
intersections of the pairs. We show some trigonometric curve pairs for k = −1.3
and k = −1.1. Computations below are done with the version 5 of Mathematica
[21] (Mathematica (TM) is a registered trademark of Wolfram Research, Inc.).
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Fig. 1.

The level sets are apparently convex closed curves and for some value of
−1.3 < k < −1.1 we will have tangential intersections which, it will turn out,
gives the optimal value we seek. As the pictures provide a hint that the level
curves are smooth and convex, that of course is already useful in pointing the
way to the theory. But this is just the tip of the computational iceberg in regards
to the problems that will come under scrutiny. To introduce them we will next
find tangential intersections of these level sets by means of Lagrange multipliers.

The gist of the computation is as follows. We begin with the two curve equa-
tions from the theorem above. As the theorem tells us the intersection of in-
terest is tangential, we augment with the standard Lagrange multiplier relation
between their gradients. We transform the equations to explicitly algebraic ones
by rewriting e.g. cos(a) as ca. We must also augment by polynomials correspond-
ing to algebraic relations such as c2

a +s2
a = 1. From these we construct a Gröbner

basis to eliminate all variables but the one of interest, using a term order efficient
for this task. Specifically, the variables to be eliminated are all weighted equally,
and lexicographically larger than the ones that remain. Ties are broken with
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graded reverse lexicographic ordering on the join of the set of elimination vari-
ables with the set of remaining variables. (This is the elimination order of Bayer
and Stillman that is utilized to eliminate all but one variable. For background on
construction and use of Gröbner bases, including elimination of variables from
algebraic systems, see e.g. [1, 6]. The latter reference discusses this ordering in
the exercises in chapter 3, section 1.)

{e1, e2} = Map[TrigExpand[trigpoly[#, a, b]]&, {1, 3}];{e1, e2} = Map[TrigExpand[trigpoly[#, a, b]]&, {1, 3}];{e1, e2} = Map[TrigExpand[trigpoly[#, a, b]]&, {1, 3}];
polys =polys =polys =
Flatten[{e1 − k, e2 − k, grad[e1, a, b] − λgrad[e2, a, b], Cos[a]2 + Sin[a]2 − 1,Flatten[{e1 − k, e2 − k, grad[e1, a, b] − λgrad[e2, a, b], Cos[a]2 + Sin[a]2 − 1,Flatten[{e1 − k, e2 − k, grad[e1, a, b] − λgrad[e2, a, b], Cos[a]2 + Sin[a]2 − 1,
Cos[b]2 + Sin[b]2 − 1}]/.trigsubsCos[b]2 + Sin[b]2 − 1}]/.trigsubsCos[b]2 + Sin[b]2 − 1}]/.trigsubs

{−k + ca + cb + cacb + sasb, −k + c3
a + c3

b + c3
ac3

b − 3cas2
a − 3cac3

bs
2
a +

9c2
ac2

bsasb − 3c2
bs

3
asb − 3cbs

2
b − 3c3

acbs
2
b + 9cacbs

2
as2

b − 3c2
asas3

b + s3
as3

b ,
− sa − cbsa + casb − λ(−9c2

asa − 9c2
ac3

bsa + 3s3
a + 3c3

bs3
a + 9c3

ac2
bsb −

27cac2
bs

2
asb + 27c2

acbsas2
b − 9cbs

3
as2

b − 3c3
as3

b + 9cas2
as3

b),
cbsa − sb − casb − λ(9c2

ac3
bsa − 3c3

bs
3
a − 9c2

bsb − 9c3
ac2

bsb + 27cac2
bs

2
asb − 27c2

acbsas2
b +

9cbs
3
as2

b + 3s3
b + 3c3

as3
b − 9cas2

as3
b), −1 + c2

a + s2
a, −1 + c2

b + s2
b}

TimingTimingTiming[kpoly = First[GroebnerBasis[polys, k, {λ, ca, sa, cb, sb},kpoly = First[GroebnerBasis[polys, k, {λ, ca, sa, cb, sb},kpoly = First[GroebnerBasis[polys, k, {λ, ca, sa, cb, sb},
MonomialOrder → EliminationOrder]]]MonomialOrder → EliminationOrder]]]MonomialOrder → EliminationOrder]]]

{0.38 Second, 9 + 3k − 5k2 + k3 − 6k4 − 4k5 + 2k6}
We will factor it to see what values of k might be of interest.

Factor[kpoly]Factor[kpoly]Factor[kpoly]

(−3 + k)(−1 + k)(1 + k)(3 + 2k + 2k2 + 2k3)

The values −1, 1, and 3 do not in fact lead to the optimum for the original
problem (at k = −1 the curves are particularly misbehaved insofar as the in-
tersections are not even discrete). The root of interest turns out to be the real
value for the cubic factor; as it is the most negative root it will give the minimal
value for f(3).

solns = NSolve[kpoly == 0, k]solns = NSolve[kpoly == 0, k]solns = NSolve[kpoly == 0, k]

{{k → −1.20409}, {k → −1.}, {k → 0.102047 − 1.11146i},

{k → 0.102047 + 1.11146i}, {k → 1.}, {k → 3.}}
A picture of the curve intersections for k ≈ −1.2 will show they intersect

tangentially.

0.5 1 1.5 2 2.5 3

3.5

4.5

5

5.5

6

Fig. 2.



74 D. Lichtblau

Note that we have what appear to be both horizontal and vertical tangencies
(they really are). Hence we would have had trouble had we tried to solve for either
variable as an implicit function of the other. One conclusion is that Lagrange
multipliers constitute a good approach to this problem. Also notice that we
have a “maximal” sort of lattice packing insofar as we cannot further expand
the curve components without having their interiors intersect. This link between
a problem in number theory and a lattice packing was an emphasis of [14]. We
indicate pictorially the situation for the other roots in k. The case k = −1 gives
intersections along line segments. For k = 1 we appear to have solved a different
tangential intersection problem. For k = 3 we actually have degeneracies to
points, which we show by plotting at k = 2.9 and observing small sets of ovals.
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This sets the stage for the geometry problems we will consider. The focus will
be on systems of equations of the type shown above that are based on Lagrange
multiplier methods. This will allow us to find curves that satisfy certain extremal
value conditions.

3 The Associated Planar Map

We now investigate the function from R2 to R2 that is motivated by the last
example.

x[a , b ] = trigpoly[1, a, b];x[a , b ] = trigpoly[1, a, b];x[a , b ] = trigpoly[1, a, b];
y[a , b ] = trigpoly[3, a, b];y[a , b ] = trigpoly[3, a, b];y[a , b ] = trigpoly[3, a, b];

We plot the images of around 4000 random points from the square [0, 2π] ×
[0, 2π].

pointlist[m ]:=Table[2 ∗ Pi ∗ {Random[], Random[]}, {2∧m}]pointlist[m ]:=Table[2 ∗ Pi ∗ {Random[], Random[]}, {2∧m}]pointlist[m ]:=Table[2 ∗ Pi ∗ {Random[], Random[]}, {2∧m}]
points2k = pointlist[12];points2k = pointlist[12];points2k = pointlist[12];
data[{point }]:={x[point], y[point]};data[{point }]:={x[point], y[point]};data[{point }]:={x[point], y[point]};
datalist2k = Map[data, points2k];datalist2k = Map[data, points2k];datalist2k = Map[data, points2k];
ListPlot[datalist2k];ListPlot[datalist2k];ListPlot[datalist2k];

We have something a bit like a Lissajous figure (insofar as those also arise
from trigonometric parametrizations). At {x, y} = {−1,−1} we see the image
pinched to a point as boundary curves cross. This may help to explain that
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dimensional component of solutions to tangential intersection problem of the
previous section.

The problem we now consider is to compute the boundary curve(s). Observe
that our map may be regarded as rational functions of za = eia and zb =
eib. Hence it is a rational map. As the boundary curves will be obtained from
algebraic relations involving this map, they too are algebraic (so in a sense we
are working with a bivariate flavor of [10]). To find these boundaries we again
turn to Gröbner bases. We have two viable approaches. One is to see where the
Jacobian of our map vanishes. The other possibility, similar to that used in the
last section, is to find extremal values. We pursue this latter approach.

The idea is to write x and y as functions of trigonometric polynomials, again
make substitutions so these become explicitly algebraic, and realize that at the
extrema (that is, on the boundary curve(s)), the gradients of the two functions
must be parallel. (Reason: on the boundary, for fixed x = x(a, b) we extrem-
ize y = y(a, b). This can be set up as a standard Lagrange multiplier prob-
lem with ∇y = λ∇x.) Note that one might attempt to influence the computa-
tional efficiency by converting from trigonometric to exponential polynomials,
thus reducing the number of polynomials and variables in the system. This is a
method advocated in [10]. Our experience with this particular example is that
the trigonometric formulation has the advantage. But one should bear in mind
that this might be dependent on both Gröbner basis implementation and prob-
lem specific details.

Here is the trigonometric formulation.

parameters = {a, b};mainvars = {x, y};parameters = {a, b};mainvars = {x, y};parameters = {a, b}; mainvars = {x, y};
xpoly = x − trigpoly[1, a, b]; ypoly = y − trigpoly[3, a, b];xpoly = x − trigpoly[1, a, b]; ypoly = y − trigpoly[3, a, b];xpoly = x − trigpoly[1, a, b]; ypoly = y − trigpoly[3, a, b];
xypolys = {xpoly, ypoly};xypolys = {xpoly, ypoly};xypolys = {xpoly, ypoly};
gradientpolys = grad[xpoly, a, b] − λgrad[ypoly, a, b];gradientpolys = grad[xpoly, a, b] − λgrad[ypoly, a, b];gradientpolys = grad[xpoly, a, b] − λgrad[ypoly, a, b];
trigidentities = {c2

a + s2
a − 1, c2

b + s2
b − 1};trigidentities = {c2

a + s2
a − 1, c2

b + s2
b − 1};trigidentities = {c2

a + s2
a − 1, c2

b + s2
b − 1};

elimvars = {λ, ca, cb, sa, sb};elimvars = {λ, ca, cb, sa, sb};elimvars = {λ, ca, cb, sa, sb};
polys = TrigExpand[Join[trigidentities, xypolys, gradientpolys]]/.trigsubspolys = TrigExpand[Join[trigidentities, xypolys, gradientpolys]]/.trigsubspolys = TrigExpand[Join[trigidentities, xypolys, gradientpolys]]/.trigsubs

{−1 + c2
a + s2

a, −1 + c2
b + s2

b , x − ca − cb − cacb − sasb,

y − c3
a − c3

b − c3
ac3

b + 3cas2
a + 3cac3

bs
2
a − 9c2

ac2
bsasb + 3c2

bs
3
asb + 3cbs

2
b + 3c3

acbs
2
b −



76 D. Lichtblau

9cacbs
2
as2

b + 3c2
asas3

b − s3
as3

b , sa − 9λc2
asa + cbsa − 9λc2

ac3
bsa + 3λs3

a + 3λc3
bs3

a −
casb + 9λc3

ac2
bsb − 27λcac2

bs
2
asb + 27λc2

acbsas2
b − 9λcbs

3
as2

b − 3λc3
as3

b + 9λcas2
as3

b ,

− cbsa + 9λc2
ac3

bsa − 3λc3
bs

3
a + sb + casb − 9λc2

bsb − 9λc3
ac2

bsb + 27λcac2
bs

2
asb −

27λc2
acbsas2

b + 9λcbs
3
as2

b + 3λs3
b + 3λc3

as3
b − 9λcas2

as3
b}

We now want to compute the polynomial in {x, y} in the elimination ideal
of the system as per [6]. That is, we eliminate from the system above all other
variables. As before, this can be attempted via a Gröbner basis computation.
Note that this is in effect a generalization of implicitization a la [11] insofar as
we have a parametrization of the region rather than just its boundary.

Timing[gb = GroebnerBasis[polys, mainvars, elimvars, Sort → True,Timing[gb = GroebnerBasis[polys, mainvars, elimvars, Sort → True,Timing[gb = GroebnerBasis[polys, mainvars, elimvars, Sort → True,
MonomialOrder → EliminationOrder]]MonomialOrder → EliminationOrder]]MonomialOrder → EliminationOrder]]

{8.77 Second,

{−216−324x+135x2 +108x3 −243x4 +117x5 +216x6 −72x7 −48x8 +16x9 −108y −
270xy−9x2y+342x3y+162x4y−48x5y−24x6y+63y2+126xy2+69x2y2+9x3y2−y3}}
Notice that we are left with one polynomial in the two variables, which means

we indeed found a curve or curves. We will factor it to better understand what
we have found.

envelope = Map[#[[1]]∧#[[2]]&, Drop[FactorList[First[gb]], 1]]envelope = Map[#[[1]]∧#[[2]]&, Drop[FactorList[First[gb]], 1]]envelope = Map[#[[1]]∧#[[2]]&, Drop[FactorList[First[gb]], 1]]

{3 − 3x2 + x3 − y, −72 − 108x − 27x2 − 48x3 − 72x4 + 16x6 − 60y − 126xy

−72x2y − 8x3y + y2}
We have a cubic function of x and an implicit relation that is quadratic in

y. One may observe that the latter is not exactly trivial and is unlikely to be
found without recourse to computer algebra. We next plot these curves to see
specifically how they bound our map.

ImplicitPlot[Evaluate[Thread[envelope == 0]], {x, −1.5, 3.2}, {y, −2, 3.2},ImplicitPlot[Evaluate[Thread[envelope == 0]], {x, −1.5, 3.2}, {y, −2, 3.2},ImplicitPlot[Evaluate[Thread[envelope == 0]], {x, −1.5, 3.2}, {y, −2, 3.2},

PlotPoints → 2000, AspectRatio → 1,PlotPoints → 2000, AspectRatio → 1,PlotPoints → 2000, AspectRatio → 1,

PlotStyle → {{Thickness[.01], GrayLevel[.5], Dashing[{.15, .04}]}, {Automatic}}];PlotStyle → {{Thickness[.01], GrayLevel[.5], Dashing[{.15, .04}]}, {Automatic}}];PlotStyle → {{Thickness[.01], GrayLevel[.5], Dashing[{.15, .04}]}, {Automatic}}];

Before proceeding to the general case we use the picture to explain those
nonminimal critical values for k derived in the previous section. The idea is to
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intersect with the line y = x to see what happens at level curve intersections
for particular values of k. Clearly {1, 1} is a local maximum. For larger values
the level curves do not intersect, but they gradually shrink to (colliding) points
at the global maximum of {3, 3}. The remaining critical value is at {−1,−1}.
From the graph we realize that when x = −1 we must have y = −1, but not
vice versa. Hence the set of level curves for y = −1 contains those for x = −1
(one may wish to review the picture of level curves corresponding to k = −1; the
larger dashed triangle boundaries are completely covered by their smaller solid
counterparts, but not vice versa). As one set of level curves contains the other,
we have a dimensional component in the intersection for this value.

4 Generalizing the Planar Maps

We have set the stage for the more general problem. While the work in [14] shows
that, for the purposes of the original minmax problem, the cases of n > 3 are
not relevant, in fact those give interesting planar maps from which one might
wish to extract boundary curves. As an example we illustrate the n = 5 case
below using around 4000 points.

x[a , b ] = trigpoly[1, a, b]; y[a , b ] = trigpoly[5, a, b];x[a , b ] = trigpoly[1, a, b]; y[a , b ] = trigpoly[5, a, b];x[a , b ] = trigpoly[1, a, b]; y[a , b ] = trigpoly[5, a, b];
pointlist[m ]:=Table[2 ∗ Pi ∗ {Random[], Random[]}, {2∧m}]pointlist[m ]:=Table[2 ∗ Pi ∗ {Random[], Random[]}, {2∧m}]pointlist[m ]:=Table[2 ∗ Pi ∗ {Random[], Random[]}, {2∧m}]
points2k = pointlist[12];points2k = pointlist[12];points2k = pointlist[12];
data[{point }]:={x[point], y[point]};data[{point }]:={x[point], y[point]};data[{point }]:={x[point], y[point]};
datalist2k = Map[data, points2k];datalist2k = Map[data, points2k];datalist2k = Map[data, points2k];
lplot = ListPlot[datalist2k];lplot = ListPlot[datalist2k];lplot = ListPlot[datalist2k];
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One can discern more complexity in this plot, insofar as there appear to
be “ghost” curves inside the region that perhaps correspond to curves in the
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domain where the Jacobian fails to have full rank. It turns out that for n = 4
we are already unable to find the boundary curves in reasonable time using the
method of the previous section. After conversion to exponentials a la [10], the
program Fermat was able to do the variable elimination via a Dixon resultant
computation in about 15 minutes [Lewis, private communication]. For n = 5 it
ran out of memory. While it is plausible that other programs might progress
further, it seems unlikely that any will go far beyond the range for which results
have been obtained by symbolic methods. Hence the motivation for the numeric-
symbolic approach we describe below. We take for our working example the case
where n = 5.

xpoly = x − trigpoly[1, a, b]; ypoly = y − trigpoly[5, a, b];xpoly = x − trigpoly[1, a, b]; ypoly = y − trigpoly[5, a, b];xpoly = x − trigpoly[1, a, b]; ypoly = y − trigpoly[5, a, b];
xypolys = {xpoly, ypoly};xypolys = {xpoly, ypoly};xypolys = {xpoly, ypoly};
gradientpolys = grad[xpoly, a, b] − λgrad[ypoly, a, b];gradientpolys = grad[xpoly, a, b] − λgrad[ypoly, a, b];gradientpolys = grad[xpoly, a, b] − λgrad[ypoly, a, b];
polys = TrigExpand[Join[trigidentities, xypolys, gradientpolys]]/.trigsubs;polys = TrigExpand[Join[trigidentities, xypolys, gradientpolys]]/.trigsubs;polys = TrigExpand[Join[trigidentities, xypolys, gradientpolys]]/.trigsubs;

Now we may set values for y and solve for the rest, retaining solutions in x. The
method we first show was used to advantage in a computational geometry setting
in [19], in a case where standard root finding approaches were problematic.

allbutyvars = {x, λ, ca, cb, sa, sb};allbutyvars = {x, λ, ca, cb, sa, sb};allbutyvars = {x, λ, ca, cb, sa, sb};
polyy = polys/.y → 11/10;polyy = polys/.y → 11/10;polyy = polys/.y → 11/10;
Timing[soln = NSolve[polyy, allbutyvars, Sort → True]; ]Timing[soln = NSolve[polyy, allbutyvars, Sort → True]; ]Timing[soln = NSolve[polyy, allbutyvars, Sort → True]; ]

{59.67 Second, Null}
Select[Union[x/.soln, SameTest→ (Abs[#1 − #2]/(Abs[#1] + Abs[#2])< 10∧(−5)&)],Select[Union[x/.soln, SameTest→ (Abs[#1 − #2]/(Abs[#1] + Abs[#2])< 10∧(−5)&)],Select[Union[x/.soln, SameTest→ (Abs[#1 − #2]/(Abs[#1] + Abs[#2])< 10∧(−5)&)],
Im[#] == 0&]Im[#] == 0&]Im[#] == 0&]

{−1.4246, −1.18145, −1.17679, −0.952203, −0.895835,

− 0.684639, −0.191699, 0.382082, 1.02001, 2.15932, 2.9082, 2.9086}
While this does give results in modest time we perceive two difficulties. One

is that it will take a very long time to get sufficiently many points to use to
recover the curves. Another is that this method will not extend much further; it
is quite sensitive to the degrees of the input polynomials and thus for larger n it
is not likely to give us solution points in any reasonable amount of time. Hence
we drop the idea of solving for several values of x for a given y, and focus instead
on obtaining one such solution at a time. The most naive approach would be to
use a simple root finder. These tend to be local methods and require reasonable
initial guesses for solution values in order to converge to a root. Once we select
a value, say for y, it is not hard to see what might be a reasonable value for
x. But the best we can say for the “trigonometric” parameters is that they lie
in the range between −1 and 1. Even worse, we have no information for the
Lagrange multiplier. In such a situation it will turn out to be preferable to use
a global method that allows for constraints on values. While one might use e.g.
interval methods for constrained global root finding, in Mathematica it is more
convenient to use the optimization function NMinimize. We have some latitude
in how we do this. For example, we may use explicit constraints to enforce some
of the polynomial equations, and take as objective function the sum of squares of
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the remaining polynomials (we thus hope to find solution values for which this is
close to zero), perhaps plus a constant. Some trial and error experimentation in-
dicates that it is convenient to enforce all of the equations as constraints, working
with just a constant objective function. Admittedly this is not the most obvious
sort of thing to set up; further information regarding use of NMinimize may be
found in [2]. Note that here it makes good sense to work with the trigonometric
parametrization as we have a very good set of ranges for those variables. With
a parametrization in terms of complex exponentials we would need to work sep-
arately with real and imaginary parts (in effect returning to the trigonometric
parametrization), whereas with the “usual” rational parametrization of a torus
our parameters would take on values in an infinite range.
Timing[{val, root} = NMinimize[{1, Flatten[{Thread[polyy == 0], .9 ≤ x ≤ 1.2}]},Timing[{val, root} = NMinimize[{1, Flatten[{Thread[polyy == 0], .9 ≤ x ≤ 1.2}]},Timing[{val, root} = NMinimize[{1, Flatten[{Thread[polyy == 0], .9 ≤ x ≤ 1.2}]},
{{x, .9, 1.2}, {λ, −10, 10}, {ca, −1, 1}, {cb, −1, 1}, {sa, −1, 1}, {sb, −1, 1}},{{x, .9, 1.2}, {λ, −10, 10}, {ca, −1, 1}, {cb, −1, 1}, {sa, −1, 1}, {sb, −1, 1}},{{x, .9, 1.2}, {λ, −10, 10}, {ca, −1, 1}, {cb, −1, 1}, {sa, −1, 1}, {sb, −1, 1}},
MaxIterations → 200, Method → "DifferentialEvolution"]]MaxIterations → 200, Method → "DifferentialEvolution"]]MaxIterations → 200, Method → "DifferentialEvolution"]]

{6.42 Second, {1., {x → 1.02001, λ → 0.20024, ca → 0.010004,

cb → 1., sa → −0.99995, sb → 1.44181 × 10−15}}}
At this point we will note that the choice of y = 11/10 is very likely “generic”,

and hence the fact that the solution values clearly indicate b = 0 means that we
are very likely on a boundary segment in the {a, b} domain. Thus it should not
be difficult to find this part of the boundary simply by implicitizing the domain
boundary curve b = 0, discarding from our polynomial system the Lagrange
multiplier part. We show this now.
envelopepiece1 =envelopepiece1 =envelopepiece1 =
First[GroebnerBasis[Take[polys, 4]/.{cb → 1, sb → 0}, {x, y}, {ca, sa}]]First[GroebnerBasis[Take[polys, 4]/.{cb → 1, sb → 0}, {x, y}, {ca, sa}]]First[GroebnerBasis[Take[polys, 4]/.{cb → 1, sb → 0}, {x, y}, {ca, sa}]]

−5x + 5x2 + 5x3 − 5x4 + x5 − y

A glance at the plot will convince us that a part of it comprises a piece of the
map boundary.

envplot1 = ImplicitPlot[Evaluate[envelopepiece1 == 0], {x, −2, 3.2}, {y, −2, 3.2},envplot1 = ImplicitPlot[Evaluate[envelopepiece1 == 0], {x, −2, 3.2}, {y, −2, 3.2},envplot1 = ImplicitPlot[Evaluate[envelopepiece1 == 0], {x, −2, 3.2}, {y, −2, 3.2},

PlotStyle → {Thickness[.01], GrayLevel[.5], Dashing[{.15, .07}]}, PlotPoints → 1000];PlotStyle → {Thickness[.01], GrayLevel[.5], Dashing[{.15, .07}]}, PlotPoints → 1000];PlotStyle → {Thickness[.01], GrayLevel[.5], Dashing[{.15, .07}]}, PlotPoints → 1000];
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That piece was relatively easy due to a stroke of luck: we deduced that it was
the image of a boundary segment. We now look at that part of the boundary in
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the bottom right portion of the picture. We note that for y = −11/10 we will
have 1.5 < x < 2.

polyy = polys/.y → −11/10;polyy = polys/.y → −11/10;polyy = polys/.y → −11/10;
Timing[Timing[Timing[
{val, root} = NMinimize[{1, Flatten[{Thread[polyy == 0], 1.2 ≤ x ≤ 2}]},{val, root} = NMinimize[{1, Flatten[{Thread[polyy == 0], 1.2 ≤ x ≤ 2}]},{val, root} = NMinimize[{1, Flatten[{Thread[polyy == 0], 1.2 ≤ x ≤ 2}]},
{{x, 1.2, 2}, {λ, −10, 10}, {ca, −1, 1}, {cb, −1, 1}, {sa, −1, 1}, {sb, −1, 1}},{{x, 1.2, 2}, {λ, −10, 10}, {ca, −1, 1}, {cb, −1, 1}, {sa, −1, 1}, {sb, −1, 1}},{{x, 1.2, 2}, {λ, −10, 10}, {ca, −1, 1}, {cb, −1, 1}, {sa, −1, 1}, {sb, −1, 1}},
MaxIterations → 200, Method → "DifferentialEvolution"]]MaxIterations → 200, Method → "DifferentialEvolution"]]MaxIterations → 200, Method → "DifferentialEvolution"]]

{15.65 Second, {1., {x → 1.72049, λ → 1.13162, ca → 0.768955,

cb → 0.768955, sa → 0.639303, sb → −0.639303}}}
This time the solutions for the trigonometric parameters suggest the segment

b = −a in the domain. We obtain the boundary for this piece using the same
method as above.

envelopepiece2 =envelopepiece2 =envelopepiece2 =
First[GroebnerBasis[Take[polys, 4]/.{cb → ca, sb → −sa}, {x, y}, {ca, sa}]]First[GroebnerBasis[Take[polys, 4]/.{cb → ca, sb → −sa}, {x, y}, {ca, sa}]]First[GroebnerBasis[Take[polys, 4]/.{cb → ca, sb → −sa}, {x, y}, {ca, sa}]]

5400 + 11700x − 8675x2 − 37800x3 − 20600x4 + 14880x5 + 13680x6 − 1920x7 −
3200x8 + 256x10 − 1980y − 6230xy − 7280x2y − 3800x3y − 800x4y − 32x5y + y2

envplot2 = ImplicitPlot[Evaluate[envelopepiece2 == 0], {x, −2, 3.2}, {y, −2, 3.2},envplot2 = ImplicitPlot[Evaluate[envelopepiece2 == 0], {x, −2, 3.2}, {y, −2, 3.2},envplot2 = ImplicitPlot[Evaluate[envelopepiece2 == 0], {x, −2, 3.2}, {y, −2, 3.2},

PlotStyle→{Thickness[.012], GrayLevel[.35], Dashing[{.12, .08}]}, PlotPoints→1000];PlotStyle→{Thickness[.012], GrayLevel[.35], Dashing[{.12, .08}]}, PlotPoints→1000];PlotStyle→{Thickness[.012], GrayLevel[.35], Dashing[{.12, .08}]}, PlotPoints→1000];
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It appears that these together give most of the boundary. We now hunt for the
part in the lower middle. For this we try to find a point near the lower crossing
of the boundary curve with the y axis. It turns out to be expedient to make two
changes to the minimization. One is that we now fix the value of x rather than
y, and the other is that we will square the polynomial constraints (this seems to
have the effect of better balancing them for the problem at hand).

polyx1 = polys/.x → 0;polyx1 = polys/.x → 0;polyx1 = polys/.x → 0;
Timing[Timing[Timing[
{val, root1} = NMinimize[{1, Flatten[{Thread[polyx1∧2 == 0], −1.6 ≤ y ≤ −1.2}]},{val, root1} = NMinimize[{1, Flatten[{Thread[polyx1∧2 == 0], −1.6 ≤ y ≤ −1.2}]},{val, root1} = NMinimize[{1, Flatten[{Thread[polyx1∧2 == 0], −1.6 ≤ y ≤ −1.2}]},
{{y, −1.6, −1.2}, {λ, −10, 10}, {ca, −1, 1}, {cb, −1, 1}, {sa, −1, 1}, {sb, −1, 1}},{{y, −1.6, −1.2}, {λ, −10, 10}, {ca, −1, 1}, {cb, −1, 1}, {sa, −1, 1}, {sb, −1, 1}},{{y, −1.6, −1.2}, {λ, −10, 10}, {ca, −1, 1}, {cb, −1, 1}, {sa, −1, 1}, {sb, −1, 1}},
MaxIterations → 200, Method → "DifferentialEvolution"]]MaxIterations → 200, Method → "DifferentialEvolution"]]MaxIterations → 200, Method → "DifferentialEvolution"]]

{10.88 Second, {1., {y → −1.25, λ → −0.8, ca → −0.21616,

cb → −0.660006, sa → 0.976358, sb → 0.75126}}}
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This time it is not obvious from the trigonometric parameter values how a
domain segment or curve might give us this part of the boundary, so now we’ll
have to do some real work. We proceed to find more boundary points in order
to reconstruct the curve therefrom. We begin with the solution point we just
found. We will want to make sure we have a good approximation. As we used
a global optimizer we may suspect that the root values are accurate to but a
few decimal places (though the exact values for y and the Lagrange multiplier
are fairly obvious). But we now have good initial values from which to proceed
further, we can refine the result to arbitrarily high precision using a local root
finder.

allbutxvars = {y, λ, ca, cb, sa, sb};allbutxvars = {y, λ, ca, cb, sa, sb};allbutxvars = {y, λ, ca, cb, sa, sb};
rootbetter1 =rootbetter1 =rootbetter1 =
FindRoot[polyx1 == 0,FindRoot[polyx1 == 0,FindRoot[polyx1 == 0,
Evaluate[Apply[Sequence, Transpose[{allbutxvars, allbutxvars/.root1}]]],Evaluate[Apply[Sequence, Transpose[{allbutxvars, allbutxvars/.root1}]]],Evaluate[Apply[Sequence, Transpose[{allbutxvars, allbutxvars/.root1}]]],
PrecisionGoal → 30, AccuracyGoal → 30, WorkingPrecision → 40]PrecisionGoal → 30, AccuracyGoal → 30, WorkingPrecision → 40]PrecisionGoal → 30, AccuracyGoal → 30, WorkingPrecision → 40]

{y → −1.250000000000000000000000000000000000000,
λ → −0.8000000000000000000000000000000000000000,

ca → −0.2161602216738507564577821056665342220011,
cb → −0.6600058667231611698297450258095487924794,

sa → 0.9763579049538707461327588348339739536197,

sb → 0.7512604447799769626674008564740588415410}
It turns out that by comparison with the values of root1 we actually had a

good result even then, correct to about 8 decimal places. This is most likely due
to use of a local polishing step in NMinimize.

To deduce the actual curve we will require a number of {x, y} pairs of points ly-
ing on it. We can obtain these in various ways. One is simply to invoke NMinimize
as above but with different values for y. This can be tedious, especially as the
minimization can present problems in some regions (possibly due to proximity
of multiple solutions, or difficulty balancing the various constraint equations).
Instead we will treat this as a homotopy continuation problem wherein the roots
found above will be initial values for a differential system. As it is easier to see y
as a function of x in this part of the curve, we will use the latter as independent
variable. We create the system below but display it in abbreviated form due to
excessive size.

varsinx = Through[allbutxvars[x]];varsinx = Through[allbutxvars[x]];varsinx = Through[allbutxvars[x]];
parampolys = polys/.Thread[allbutxvars → varsinx];parampolys = polys/.Thread[allbutxvars → varsinx];parampolys = polys/.Thread[allbutxvars → varsinx];
diffpolys = D[parampolys, x];diffpolys = D[parampolys, x];diffpolys = D[parampolys, x];
Short[Short[Short[
odesystem1 = Join[Thread[diffpolys == 0],odesystem1 = Join[Thread[diffpolys == 0],odesystem1 = Join[Thread[diffpolys == 0],
Thread[(varsinx/.x → 0) == (allbutxvars/.rootbetter1)]], 12]Thread[(varsinx/.x → 0) == (allbutxvars/.rootbetter1)]], 12]Thread[(varsinx/.x → 0) == (allbutxvars/.rootbetter1)]], 12]

{2ca[x]c′
a[x] + 2sa[x]s′

a[x] == 0, 2cb[x]c′
b[x] + 2sb[x]s′

b[x] == 0,
1 − c′

a[x] − cb[x]c′
a[x] − c′

b[x] − ca[x]c′
b[x] − sb[x]s′

a[x] − sa[x]s′
b[x] == 0,

y′[x] − 5ca[x]4c′
a[x] − 5ca[x]4cb[x]5c′

a[x] + 30ca[x]2sa[x]2c′
a[x] +

30ca[x]2cb[x]5sa[x]2c′
a[x] − 5sa[x]4c′

a[x] − 5cb[x]5sa[x]4c′
a[x] −

100ca[x]3cb[x]4sa[x]sb[x]c′
a[x] + 100ca[x]cb[x]4sa[x]3sb[x]c′

a[x] + 〈〈82〉〉 +
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30cb[x]2sa[x]5sb[x]2s′
b[x] − 20cb[x]sb[x]3s′

b[x] − 20ca[x]5cb[x]sb[x]3s′
b[x] +

200ca[x]3cb[x]sa[x]2sb[x]3s′
b[x] − 100ca[x]cb[x]sa[x]4sb[x]3s′

b[x] −
25ca[x]4sa[x]sb[x]4s′

b[x] + 50ca[x]2sa[x]3sb[x]4s′
b[x] − 5sa[x]5sb[x]4s′

b[x] == 0,
〈〈135〉〉 + 〈〈1〉〉 == 0, 〈〈1〉〉, 〈〈1〉〉, 〈〈 1〉〉, ca[0] == −〈〈63〉〉,

cb[0] == −0.6600058667231611698297450258095487924794,
sa[0] == 0.9763579049538707461327588348339739536197,
sb[0] == 0.7512604447799769626674008564740588415410}
desoln1 = NDSolve[odesystem1, varsinx, {x, 0, 1.2}];desoln1 = NDSolve[odesystem1, varsinx, {x, 0, 1.2}];desoln1 = NDSolve[odesystem1, varsinx, {x, 0, 1.2}];
NDSolve::ndsz :
At x == 0.3090169939494037‘, step size is effectively zero;
singularity or stiff system suspected.

The message tells us we were not able to get very far. A reasonable guess as
to the cause is that we may be near a tangential intersection of solution curves
(which would amount to a bifurcation in the solution set to what is really a
differential algebraic system). In any case, what we have already suffices to give
us points that lie approximately on the boundary curve. We will use several of
them as initial values to find boundary points to high precision.

solnfunctions1 = First[varsinx/.desoln1];solnfunctions1 = First[varsinx/.desoln1];solnfunctions1 = First[varsinx/.desoln1];
valuelists1 =valuelists1 =valuelists1 =
Table[Join[{t → x}, Thread[List[allbutxvars, solnfunctions1]]],Table[Join[{t → x}, Thread[List[allbutxvars, solnfunctions1]]],Table[Join[{t → x}, Thread[List[allbutxvars, solnfunctions1]]],
{x, 0, 3/10, 5/1000}]/.t → x;{x, 0, 3/10, 5/1000}]/.t → x;{x, 0, 3/10, 5/1000}]/.t → x;

highprecsolns1 =highprecsolns1 =highprecsolns1 =
Table[Table[Table[
Flatten[{First[valuelists1[[j]]],Flatten[{First[valuelists1[[j]]],Flatten[{First[valuelists1[[j]]],
FindRoot[Evaluate[(polys/.First[valuelists1[[j]]]) == 0],FindRoot[Evaluate[(polys/.First[valuelists1[[j]]]) == 0],FindRoot[Evaluate[(polys/.First[valuelists1[[j]]]) == 0],
Evaluate[Apply[Sequence, Rest[valuelists1[[j]]]]], PrecisionGoal → 100,Evaluate[Apply[Sequence, Rest[valuelists1[[j]]]]], PrecisionGoal → 100,Evaluate[Apply[Sequence, Rest[valuelists1[[j]]]]], PrecisionGoal → 100,

AccuracyGoal → 100, WorkingPrecision → 150]}], {j, Length[valuelists1]}];AccuracyGoal → 100, WorkingPrecision → 150]}], {j, Length[valuelists1]}];AccuracyGoal → 100, WorkingPrecision → 150]}], {j, Length[valuelists1]}];
We now find more solutions by moving to another part of (what we suspect

will be) the same curve. We repeat the process of finding one solution, refining
it, approximating a part of the curve through it, and refining individual points
thereon.

polyx2 = polys/.x → −2/5;polyx2 = polys/.x → −2/5;polyx2 = polys/.x → −2/5;
Timing[Timing[Timing[
{val, root2} = NMinimize[{1, Flatten[{Thread[polyx2∧2 == 0], −1.2 ≤ y ≤ −.9}]},{val, root2} = NMinimize[{1, Flatten[{Thread[polyx2∧2 == 0], −1.2 ≤ y ≤ −.9}]},{val, root2} = NMinimize[{1, Flatten[{Thread[polyx2∧2 == 0], −1.2 ≤ y ≤ −.9}]},
{{y, −1.2, −.9}, {λ, −10, 10}, {ca, −1, 1}, {cb, −1, 1}, {sa, −1, 1}, {sb, −1, 1}},{{y, −1.2, −.9}, {λ, −10, 10}, {ca, −1, 1}, {cb, −1, 1}, {sa, −1, 1}, {sb, −1, 1}},{{y, −1.2, −.9}, {λ, −10, 10}, {ca, −1, 1}, {cb, −1, 1}, {sa, −1, 1}, {sb, −1, 1}},
MaxIterations → 200, Method → "DifferentialEvolution"]]MaxIterations → 200, Method → "DifferentialEvolution"]]MaxIterations → 200, Method → "DifferentialEvolution"]]

{10.79 Second, {1., {y → −1.02904, λ → 1.5674,
ca → −0.847762, cb → −0.337837, sa → 0.530377, sb → 0.941204}}}

rootbetter2 =rootbetter2 =rootbetter2 =
FindRoot[polyx2 == 0,FindRoot[polyx2 == 0,FindRoot[polyx2 == 0,
Evaluate[Apply[Sequence, Transpose[{allbutxvars, allbutxvars/.root2}]]],Evaluate[Apply[Sequence, Transpose[{allbutxvars, allbutxvars/.root2}]]],Evaluate[Apply[Sequence, Transpose[{allbutxvars, allbutxvars/.root2}]]],
PrecisionGoal → 30, AccuracyGoal → 30, WorkingPrecision → 40];PrecisionGoal → 30, AccuracyGoal → 30, WorkingPrecision → 40];PrecisionGoal → 30, AccuracyGoal → 30, WorkingPrecision → 40];

odesystem2 = Join[Thread[diffpolys == 0],odesystem2 = Join[Thread[diffpolys == 0],odesystem2 = Join[Thread[diffpolys == 0],
Thread[(varsinx/.x → −2/5) == (allbutxvars/.rootbetter2)]];Thread[(varsinx/.x → −2/5) == (allbutxvars/.rootbetter2)]];Thread[(varsinx/.x → −2/5) == (allbutxvars/.rootbetter2)]];

desoln2 = NDSolve[odesystem2, varsinx, {x, −2/5, −1}];desoln2 = NDSolve[odesystem2, varsinx, {x, −2/5, −1}];desoln2 = NDSolve[odesystem2, varsinx, {x, −2/5, −1}];
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NDSolve::ndsz :
At x == − 0.809017, step size is effectively zero;
singularity or stiff system suspected.

Again we did not get as far as we might like, but no matter. We will take
several estimated solutions and refine them as before.

solnfunctions2 = First[varsinx/.desoln2];solnfunctions2 = First[varsinx/.desoln2];solnfunctions2 = First[varsinx/.desoln2];
valuelists2 =valuelists2 =valuelists2 =
Table[Join[{t → x}, Thread[List[allbutxvars, solnfunctions2]]],Table[Join[{t → x}, Thread[List[allbutxvars, solnfunctions2]]],Table[Join[{t → x}, Thread[List[allbutxvars, solnfunctions2]]],
{x, −2/5, −4/5, −5/1000}]/.t → x;{x, −2/5, −4/5, −5/1000}]/.t → x;{x, −2/5, −4/5, −5/1000}]/.t → x;

highprecsolns2 =highprecsolns2 =highprecsolns2 =
Table[Table[Table[
Flatten[{First[valuelists2[[j]]],Flatten[{First[valuelists2[[j]]],Flatten[{First[valuelists2[[j]]],
FindRoot[Evaluate[(polys/.First[valuelists2[[j]]]) == 0],FindRoot[Evaluate[(polys/.First[valuelists2[[j]]]) == 0],FindRoot[Evaluate[(polys/.First[valuelists2[[j]]]) == 0],
Evaluate[Apply[Sequence, Rest[valuelists2[[j]]]]], PrecisionGoal → 100,Evaluate[Apply[Sequence, Rest[valuelists2[[j]]]]], PrecisionGoal → 100,Evaluate[Apply[Sequence, Rest[valuelists2[[j]]]]], PrecisionGoal → 100,

AccuracyGoal → 100, WorkingPrecision → 150]}], {j, Length[valuelists2]}];AccuracyGoal → 100, WorkingPrecision → 150]}], {j, Length[valuelists2]}];AccuracyGoal → 100, WorkingPrecision → 150]}], {j, Length[valuelists2]}];
With these values we can now attempt to reconstruct the curve. As reasonable

inferences from the picture we guess that it is a polynomial of degree at most 2
in y, and 12 in x. We form the possible monomials as our “basis” set, evaluate
these at the {x, y} values corresponding to our high precision approximations of
points on the boundary, and find the appropriate null space. Given that we have
vectors of approximate numbers, the reliability of such an undertaking depends
heavily on the method. Specifically it is based on singular value decomposition
rather than, say, Gaussian elimination (see e.g. [7]).

xyvals = Join[highprecsolns1, highprecsolns2]/.xyvals = Join[highprecsolns1, highprecsolns2]/.xyvals = Join[highprecsolns1, highprecsolns2]/.
((a /;!MatchQ[a, x|y]) → b ) :→ Sequence[];((a /;!MatchQ[a, x|y]) → b ) :→ Sequence[];((a /;!MatchQ[a, x|y]) → b ) :→ Sequence[];

xypowers = Flatten[Table[x∧j ∗ y∧k, {j, 0, 12}, {k, 0, 2}]];xypowers = Flatten[Table[x∧j ∗ y∧k, {j, 0, 12}, {k, 0, 2}]];xypowers = Flatten[Table[x∧j ∗ y∧k, {j, 0, 12}, {k, 0, 2}]];
valuevectors = xypowers/.xyvals;valuevectors = xypowers/.xyvals;valuevectors = xypowers/.xyvals;
ns = NullSpace[valuevectors];ns = NullSpace[valuevectors];ns = NullSpace[valuevectors];
Length[ns]Length[ns]Length[ns]

16

We find that we have 16 null vectors, so we cannot formulate a unique (to
scalar multiples) polynomial. But this merely indicates that we have more mono-
mials in our basis than we require; that is, the defining polynomial is (not sur-
prisingly) using far fewer than the full set we provided. We “squeeze” out a null
vector in terms of lower degree monomial basis members by extracting the last
element of the null set in row echelon form. Before we proceed we will do two
things. One is to replace the null vector values that are very clearly zeros to high
accuracy with exact zeros (so as not to mistakenly use them as pivots). The other
is to reverse the vectors so that entries that correspond to higher degree basis
members are at the beginning. Strictly speaking it would probably be better to
order by total degree, but this will suffice for our purposes. After we row reduce
we may again have artificial values which we replace by zero.

ns2 = Chop[ns, 10∧(−145)];ns2 = Chop[ns, 10∧(−145)];ns2 = Chop[ns, 10∧(−145)];
ns3 = Map[Reverse, ns2];ns3 = Map[Reverse, ns2];ns3 = Map[Reverse, ns2];
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rred = RowReduce[ns3];rred = RowReduce[ns3];rred = RowReduce[ns3];
rred2 = Chop[rred, 10∧(−145)];rred2 = Chop[rred, 10∧(−145)];rred2 = Chop[rred, 10∧(−145)];
N [Last[rred2]]N [Last[rred2]]N [Last[rred2]]

{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 1., 0., 0., 0., 0., 0., −1.25, 0., 0., 0., 0., 0., 0.3125, 0., 0.25, 0.3125}
This looks quite promising. We rationalize, find the common denominator, re-

move it by multiplication, and finally form the curve by associating the resulting
vector of coefficients with the monomial basis.

coeffs = Rationalize[Last[rred2]];coeffs = Rationalize[Last[rred2]];coeffs = Rationalize[Last[rred2]];
mult = Apply[LCM, Denominator[coeffs]];mult = Apply[LCM, Denominator[coeffs]];mult = Apply[LCM, Denominator[coeffs]];
coeffs2 = coeffs ∗ mult;coeffs2 = coeffs ∗ mult;coeffs2 = coeffs ∗ mult;
envelopepiece3 = coeffs2.Reverse[xypowers]envelopepiece3 = coeffs2.Reverse[xypowers]envelopepiece3 = coeffs2.Reverse[xypowers]

5 + 5x − 20x3 + 16x5 + 4y

envplot3 = ImplicitPlot[Evaluate[envelopepiece3 == 0], {x, −2, 3.2}, {y, −2, 3.2},envplot3 = ImplicitPlot[Evaluate[envelopepiece3 == 0], {x, −2, 3.2}, {y, −2, 3.2},envplot3 = ImplicitPlot[Evaluate[envelopepiece3 == 0], {x, −2, 3.2}, {y, −2, 3.2},

PlotStyle→{{{Thickness[.008], GrayLevel[.2], Dashing[{.12, .08}]}, PlotPoints→1000];PlotStyle→{{{Thickness[.008], GrayLevel[.2], Dashing[{.12, .08}]}, PlotPoints→1000];PlotStyle→{{{Thickness[.008], GrayLevel[.2], Dashing[{.12, .08}]}, PlotPoints→1000];
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Fig. 9.

This certainly looks like that missing lower middle portion of the boundary.
We’ll put them all in one picture to see that this is so.

ll = Show[{lplot, envplot1, envplot2, envplot3}];ll = Show[{lplot, envplot1, envplot2, envplot3}];ll = Show[{lplot, envplot1, envplot2, envplot3}];
We now want to verify that our curve is indeed part of the boundary of the

planar map. To this end we pick specific exact values on the curve and see if
they are consistent with the original polynomial system. This will happen if and
only if they lie on a curve that satisfies the original system. For example, we
solve for y when x = −1/2.

xycoord = Prepend[First[Solve[(envelopepiece3/.x → −1/2) == 0, y]], x → −1/2]xycoord = Prepend[First[Solve[(envelopepiece3/.x → −1/2) == 0, y]], x → −1/2]xycoord = Prepend[First[Solve[(envelopepiece3/.x → −1/2) == 0, y]], x → −1/2]

{x → − 1
2 , y → − 9

8}
We plug these values into the polynomial system and check whether we get a

nontrivial Gröbner basis.

GroebnerBasis[polys/.xycoord, {λ, ca, cb, sa, sb},GroebnerBasis[polys/.xycoord, {λ, ca, cb, sa, sb},GroebnerBasis[polys/.xycoord, {λ, ca, cb, sa, sb},
MonomialOrder → DegreeReverseLexicographic]MonomialOrder → DegreeReverseLexicographic]MonomialOrder → DegreeReverseLexicographic]
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{4 − 5λ, 7 − 4ca − 4cb − 8s2
a − 8sasb − 8s2

b , −1+ c2
b + s2

b , −1− 2ca − 2cb − 2cacb − 2sasb,

1 + 4ca − 8c2
a + 4cb + 8sasb + 8s2

b , 2sa − 2cbsa − 5sb + 2casb + 4cbsb + 8s3
b ,

5sa + 4casa + 3cbsa − sb − 7casb − 4cbsb − 16sas2
b , −2 − 3cb + 4s2

b + 8cbs
2
b ,

− 1 + cb + 2sasb − 2cbsasb + 2s2
b + 2cas2

b , −3 − 4ca + 4sasb + 8casasb + 8s2
b + 8cas2

b}
This indicates that the point is in fact on a boundary curve. We try another

such point. For brevity we will simply ascertain that the basis is not the trivial
one (containing just 1) that would arise from an inconsistent system.

xycoord2 = Prepend[First[Solve[(envelopepiece3/.x → −1/4) == 0, y]], x → −1/4]xycoord2 = Prepend[First[Solve[(envelopepiece3/.x → −1/4) == 0, y]], x → −1/4]xycoord2 = Prepend[First[Solve[(envelopepiece3/.x → −1/4) == 0, y]], x → −1/4]
GroebnerBasis[polys/.xycoord2, {λ, ca, cb, sa, sb},GroebnerBasis[polys/.xycoord2, {λ, ca, cb, sa, sb},GroebnerBasis[polys/.xycoord2, {λ, ca, cb, sa, sb},
MonomialOrder → DegreeReverseLexicographic]=!={1}MonomialOrder → DegreeReverseLexicographic]=!={1}MonomialOrder → DegreeReverseLexicographic]=!={1}

{x → − 1
4 , y → − 259

256}
True

By way of contrast, we now demonstrate that a point not on the boundary
will, as claimed above, give a basis containing just 1. For this we perturb the y
coordinate from the last example. (That an inconsistent polynomial system has
a reduced Gröbner basis of 1 is well known from general theory, but all the same
should be demonstrated from time to time in actual computation.)

GroebnerBasis[polys/.{x → −1/4, y → −261/265}, {λ, ca, cb, sa, sb},GroebnerBasis[polys/.{x → −1/4, y → −261/265}, {λ, ca, cb, sa, sb},GroebnerBasis[polys/.{x → −1/4, y → −261/265}, {λ, ca, cb, sa, sb},
MonomialOrder → DegreeReverseLexicographic]MonomialOrder → DegreeReverseLexicographic]MonomialOrder → DegreeReverseLexicographic]

{1}
By verifying sufficiently many points—the number being dependent on the

degree of the boundary curve—one can prove that the entire curve satisfies
the boundary curve polynomial system. This might be done using interpolation
methods as in [9], chapter 5.
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For general interest we indicate another way to recover the boundary curve,
this time from one point. We will start with the exact value but it will be seen
that all we actually require is a high precision approximation. For this to work
it is advisable that the coordinates not be algebraic numbers (so as to avoid any
algebraic dependencies not forced by the curve polynomial itself). We will take
the point with x = π

4 .

xycoord = Prepend[First[Solve[(envelopepiece3/.x → −Pi/4) == 0, y]], x → −Pi/4]xycoord = Prepend[First[Solve[(envelopepiece3/.x → −Pi/4) == 0, y]], x → −Pi/4]xycoord = Prepend[First[Solve[(envelopepiece3/.x → −Pi/4) == 0, y]], x → −Pi/4]
valuevector = xypowers/.xycoord;valuevector = xypowers/.xycoord;valuevector = xypowers/.xycoord;

{x → −π
4 , y → 1

256 (−320 + 80π − 20π3 + π5)}
This time we form a lattice with these evaluated basis monomials multiplied

by a suitably large constant in the first column and an identity matrix adjoined
to the right.

lat = Transpose[Prepend[IdentityMatrix[Length[valuevector]],lat = Transpose[Prepend[IdentityMatrix[Length[valuevector]],lat = Transpose[Prepend[IdentityMatrix[Length[valuevector]],
Round[10∧200 ∗ N [valuevector, 210]]]];Round[10∧200 ∗ N [valuevector, 210]]]];Round[10∧200 ∗ N [valuevector, 210]]]];

We now reduce the lattice and take as approximate null vectors all those for
which the first column is fairly small. Again we reverse the ordering so as to
have later components correspond to lexicographically smaller monomials, row
reduce the matrix of null vectors, and use the last vector as coefficients for our
implicit polynomial.

nullvecs = Map[Drop[#, 1]&, Select[redlat, Abs[#[[1]]] < 20&]];nullvecs = Map[Drop[#, 1]&, Select[redlat, Abs[#[[1]]] < 20&]];nullvecs = Map[Drop[#, 1]&, Select[redlat, Abs[#[[1]]] < 20&]];
Last[RowReduce[Map[Reverse, nullvecs]]]Last[RowReduce[Map[Reverse, nullvecs]]]Last[RowReduce[Map[Reverse, nullvecs]]]

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, −5/4,

0, 0, 0, 0, 0, 5/16, 0, 1/4, 5/16}
We see that we did in fact recover the same polynomial coefficients as with the

previous approach. We remark that this method is quite similar to that of finding
a minimal polynomial for a given approximate number (which, for example, is
the method behind the Mathematica function NumberTheory‘Recognize). This
in turn may be utilized to factor a univariate polynomial as in [15]. One might
also use for these purposes the efficient integer relation finding method known
as PSLQ [8].

5 Discussion and Directions for Future Work

We began with a brief review of a problem that arose in a number theory setting
and in some way migrated to computational geometry as an example of a sort of
extremal planar packing. We showed how symbolic computation methods may
be applied to determine important values in that problem. We next discussed
a planar trigonometric polynomial parametrization associated in a natural way
with the original problem. It gave rise to a region for which the boundary in a
sense generalizes a Lissajous figure. The next step in our enquiry was to utilize
symbolic algebra to determine the equation for each part of that boundary. As
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we did not have a direct parametrization of that boundary this task could not
be done by the usual implicitization methods (which tend to be tractable to at
least moderate degree).

Thus far this was a warm up to the real problem at hand. When we look at
examples of such maps in higher degrees the symbolic methods become mired
by computational complexity. While certainly it might be possible that a clever
reformulation, or a more powerful symbolic elimination implementation, might
suffice, the methods we next developed are in a sense less troubled by degree or
by specifics of the problem. Hence they might be utilized when one reaches the
point at which clever symbolic approaches simply fail to yield a result.

For the harder problem we employed a mix of heuristics and numeric methods.
We found approximations of isolated boundary curve points using both a numeric
algebraic solver and optimization software (the latter being more readily applied
in harder cases). In certain cases luck was on our side and we were able to
“guess” the domain segment that gave rise to the part of the boundary on which
our point was found. When this was not possible we showed how to refine the
approximations and generate more approximate boundary points by setting up
and solving what amounts to a DAE system; we worked with it instead as an
ODE system in order to maintain simplicity in the exposition and code. We then
used simple numeric linear algebra to fit to a guessed curve. For this we used
far more points than we had basis vectors, so as to be confident of generating
the correct null space to good approximation (this seems to be all the more
important given how close our sample points were clustered). We next employed
row reduction to find a “minimal” null vector corresponding to the “smallest”
basis monomials. This gave our solution curve polynomial.

We remark that the steps of solving an ODE (or DAE) system to obtain
points on the graph, and computing a null space for a monomial basis eval-
uated at those points, are also utilized in [4] for the purpose of approximate
factorization of bivariate polynomials. This in turn is related to work in [5] for
approximate implicitization of hypersurfaces. Our usage is actually more closely
related to the former reference, in that the latter uses a calculus of variations
formulation involving an integral functional, which first requires a parametriza-
tion of the curve. A big difference between our problem and that of bivariate
factorization is that our hypersurface (curve, in this case) arises from an ex-
tremality condition on a surface map and hence there are added complications
both to finding points on and following paths along it. One also recognizes at
this point that our method might find a factor over the (approximate) reals that
is a proper factor of a factor over the rationals. We will discuss this possibility
in the last section.

An issue that did not arise in our particular example is as follows. The method
of finding an approximate factor of the boundary curve might yield a factor
over an extension field of the rationals. In this case we are faced with a few
choices, and what we do will depend on what we require. If our interest is in
the computational geometry aspects of the problem we might be quite happy
to work with that approximate factorization over the reals. If we are working
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on a problem from mathematics that requires the exact factor (as was the case
in [14]) then we can attempt to find the exact form by methods that recognize
algebraic numbers from numeric approximations of sufficiently high precision as
discussed in [15, 8]. Alternatively we might try to find approximations of the
algebraic conjugate factors, e.g. using methods from [3], and combine the factors
to deduce the correct factor over the rationals. Finally we should note that if
only a crude approximation to the curve is needed, then fast methods of edge
detection from the field of image processing may suffice.

One thing to notice is that in the type of problem we discussed this issue
cannot arise unless a similar factorization takes place in the domain. To be
specific, recall that a necessary condition that a point be on the boundary curve
is that it be the image of a point in the domain at which the Jacobian vanishes.
Thus distinct factors in the boundary must come from distinct factors of the
Jacobian. Since we have the Jacobian in explicit form, methods of absolute
factorization might be employed to see whether there are factors over a nontrivial
algebraic extension of the rationals.

It is important to realize that hybrid methods appear in several ways in this
work, some lurking behind the scenes. For example, the numeric solver NSolve
is based on a mix of Gröbner basis and numeric methods [16]. The function
Rationalize is based on continued fraction methods (see e.g. chapter 4 of [9]),
which themselves can use mixed exact and approximate numeric methods when
operating at high precision (though the example we showed was quite tame).
Various implementations of lattice reduction make use of approximate arith-
metic. Though we did not do so, a lattice reduction method may be employed
to rationalize a set of approximate values collectively so as to obtain a com-
mon denominator. This is generally referred to as simultaneous diophantine
approximation, and the underlying method is quite similar to that of recog-
nizing a minimal polynomial from a root approximation; the principle differ-
ence in implementation involves whether or not a lattice is transposed. See [9],
chapter 17.

One obvious question to pose is just how generally useful are the methods
we have discussed. To a large extent this depends on the sort of computational
problem one wishes to solve. For purposes of obtaining a numeric approximation
e.g. for graphing, what we have shown clearly requires too much work. It is only
when one requires either an exact implicit curve or a high precision approxima-
tion that something of this sort must be done. This can arise, for example, in
finding algebraic surface level curves (in effect we did that, taking as our third
surface coordinate the Jacobian, and looking at the set where it vanishes). An-
other such computation might be finding offset curves from an algebraic planar
object in cases where the complexity of a purely symbolic approach is too great.
For this one might start with approximations based on fast marching methods as
described in [20] (a simple Mathematica implementation of which may be found
in [17]).

We conclude with several questions and remarks that indicate directions for
further investigation.
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• Could methods from real algebraic geometry e.g. cylindrical algebraic de-
composition be employed to find boundary curves efficiently?

• Can the process we described be automated? In our work it required a
lot of eyeballing of the list plot to see what might be viable places to look
for approximate curve points. Indeed, there were several failed attempts (not
shown).

• Are there more robust ways to find individual points on the curves? While
we used some global optimization software, other methods e.g. with intervals
might work better. Image processing methods can be used to find approxi-
mate coordinate values for {x, y} but one also requires corresponding values
from the domain space in order to obtain high precision refinements. A possi-
ble approach would be to regard {x, y} as a Taylor series in {a, b} and then
“invert”. Of course on the curve of interest the inverse function theorem does
not apply, because we are precisely where the Jacobian vanishes! But this is
not really a concern because a “multivalued” inverse function approximation
e.g. from a Puiseux series will suffice for our purposes. Alternatively we might
lift the problem to three dimensions, say by adding a coordinate function z =
Jacobian(x(a, b), y(a, b)), and change coordinates to invert locally the map from
plane to surface.

•In the symbolic computations of boundary curves we found the extremal
formulation in terms of Lagrange multipliers to be preferable to the vanish-
ing Jacobian approach (possibly because the latter gives factors that are ex-
traneous for our purposes). A drawback to the Lagrange multiplier method in
our later numeric approach is that we really do not have a good idea of the
range of values the multiplier variable might take. So it might be advantageous
to revisit the vanishing Jacobian formulation in conjunction with the numeric
techniques.

• Are there better ways to “track” a piece of curve to obtain a set of approx-
imate points thereon?

• We first found candidate boundaries. We outlined a method of validating
them algorithmically, by showing that individual points satisfy the boundary
curve system. We chose this approach because the more direct route of computing
an elimination ideal appears to be infeasible using the software available. It would
be interesting to know whether there might be a feasible direct approach.

• Our method of deducing the implicit polynomial from rationalizing relied
on those curves being defined by polynomials over the rationals. Is there a way
to extend to curves with minimal polynomials having algebraic numbers for
coefficients?

• Might this method generalize in a reasonable way to implicitization of
bounding surfaces of parametrized volumetric maps?
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Abstract. The goal of this paper is to report on a prototype of a new
dynamic geometry software, GDI (Geometŕıa Dinámica Inteligente). We
will describe how, apart from being a standard dynamic environment for
elementary geometry, GDI addresses some key problems of the dynamic
geometry paradigm, by including enhanced tools for loci generation and
automatic proving, plus another distinguished feature, namely, a dis-
covery option, allowing the user to find complementary hypotheses for
arbitrary statements to become true. The key technique for all these im-
provements is the development of an automatic “bridge” between the
graphic and the algebraic counterparts of the program (calling on an
external computer algebra system).

1 Introduction

In the late eighties, two computer programs allowing dynamic changes in plane
geometric constructions were simultaneously introduced: Cabri [20] and The
Geometer’s Sketchpad, GSP [16]. The key feature of this software is that uncon-
strained parts of the construction can be dragged on by the user and, as they
move, all other elements in the construction automatically self–adjust, preserving
mutual dependency relations and constraints [17]. Because of its evident impact
in computer aided mathematics instruction, a specific name, i.e. dynamic geome-
try, was soon coined for programs presenting this kind of feature. Dynamic geom-
etry software offers a virtual environment where accurate construction of geomet-
ric configurations can be carried out. Besides Cabri and GSP, Cinderella [28, 18]
and Geometry Expert, GEX [11] can be also quoted as well known and per-
forming dynamic geometry environments (see http://mathforum.org/dynamic/
classroom.html for further information on different programs of this kind).

On the other hand, even in this summary introduction to the topic, we would
like to highlight three problems (that are creating, perhaps, a real bottleneck
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for future developments) that dynamic geometry software has to face in general:
the so called continuity problem, the loci generation and the proof capability.

A frequent case in standard dynamic geometry environments occurs when a
small move of a free object causes a sudden jump of a dependent element. Dy-
namic geometry developers and other researchers have paid a lot of attention to
this aspect, concluding that continuity issues are not just a programming mat-
ter, but a central point, closely related to other topics such as the conservative
or deterministic behavior of the dynamic setup (a dynamic geometry program is
called conservative when it always happens that, departing from any configura-
tion and after moving some free elements, returning them to the initial position
yields always the starting configuration). See Section 2 below.

Regarding loci generation, most dynamic geometry environments heavily rely
on a “sampling” approach [2] . Thus, in order to build up some geometric locus,
they simulate dragging an element of a construction, usually a point, and then
–by considering many instances of the construction as the point is dragged on–
the program automatically generates the path of some other element which is
supposed to be activated by the displacement of the first object. This approach,
quite successful in many cases, requires, first, to construct an instance of the
geometric locus and, thus, it makes difficult or impossible the computation of
loci defined through conditions that, albeit reasonable, the user does not know
how to exemplify. For example, given a circle with center O and going through
another fixed point U , suppose we want to compute the locus of points B such
that they are in the bisector of the points O, A (where A belongs to the given
circle) and such that the segments OB and AB are perpendicular (see Fig. 6).
Then, else we know how to construct such a point B (recalling a property of
euclidean geometry that states that the perpendicularity of OB and AB implies
point B is on the circle with diameter OA), or we will be unable to use the
locus generation tool in most Dynamic Geometry programs. Even worse, in the
“sampling” approach, the loci equations, in general, are not provided by the
machine for further computation purposes. See Section 3 for details.

Finally, a common use of dynamic geometry environments such as Cabri and
GSP, in elementary geometry teaching and learning, involves an activity that
has been termed as ‘visual proving’ (of properties and theorems). The numerical
accuracy of the constructions and the possibility to experiment with different
instances (by dragging the basic geometric objects in a given statement) get
the user convinced about the truth or falsity of some conjecture. Partly react-
ing to this approach, last generation programs such as Cinderella, GEX and
GEOTHER [29] start including formal tools for automatic geometric theorem
proving. But they are of little help to proceed any further once the user is in-
formed about the falsity of some conjectural statement. See Sections 4 and 5 for
new findings in this respect.

In this context, the goal of this note is to provide some news on a prototype
of a recent program, GDI [3, 4], a Spanish acronym of Intelligent Dynamic Ge-
ometry, freely distributed at request, from the first author of this paper. We
will describe how, apart from being a standard dynamic geometry environment,
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GDI includes enhanced tools for loci generation and automatic proving, plus
another distinguished feature, namely, a discovery option, allowing the user to
find complementary hypotheses for arbitrary statements to become true, or, in
other words, to find the missing hypotheses so that a given conclusion follows
from a given (perhaps drastically) incomplete set of hypotheses.

The key technique for all these improvements is the development of an au-
tomatic “bridge” between the graphic and the algebraic counterparts of the
program (CoCoA [5] and Mathematica), as proposed in [26, 23].

2 Continuity

Roughly speaking, the problem of continuity appears when performing –by
dragging– small changes in some element of a construction involve sudden
changes in some other parts of the construction, as it happens in the paradig-
matic construction shown in Fig. 1 (taken from [18], p. 88 ): A circle (several
positions drawn with thin lines) moves from left to right through another circle
(one position drawn with thick line) of the same radius. On the left figure, the
expected continuity behavior, the one would like to see: the selected intersection
point of the two circles stays above the horizontal line while dragging the mov-
ing circle. On the right figure, the chosen intersection point suddenly jumps. It
should be remarked that the mathematical theory behind Cinderella has solved
this problem, as explained in [18], [19] but it is not the case of Cabri or GSP
(see [13], p. 139, for a detailed analysis of an example with Cabri).

The continuity problem is not simply an issue about finding the right im-
plementation strategies for visualization: it is mathematically involved and it
is related to the so called ”conservative” or ”deterministic” behavior (namely,
that for any concrete position of the base points in a construction, the position
of all the constructed elements should be uniquely determined) of the dynamic
geometry software, see [21], [8]). An example of a non-deterministic situation
is shown in Fig. 2 (taken from [8]): the incenter I of a triangle is constructed,
with Cinderella, for a triangle ABC. Now in Fig. 2, left and right, two different
positions of the output point (the incenter) are shown, both corresponding to
the same positions of the vertices of the triangle: each one can be obtained from
the other by merely dragging around (in some way) one of the vertices, and
then returning it to the original position. To make things more tangled, it is
known that continuity and deterministic principles can not simultaneously hold,
for mathematical reasons, on a dynamic geometry software ([8], [13]).

Fig. 1. A case of discontinuity



Towards Solving the Dynamic Geometry Bottleneck 95

Fig. 2. An example of non deterministic behavior

The symbolic approach taken by GDI to represent internally geometric con-
structions gives a way of circumventing the continuity/deterministic issue. Be-
sides including some heuristics that avoid discontinuity in the visualization of
some constructions (but that fail in some other cases), GDI favors (when the user
aims to perform proving or discovering tasks) to keep construction intermediate
steps (such as the intersection of two circles) in a raw form, as a system of equa-
tions, without aiming to solve this system until it is unavoidable for obtaining
the output (i.e. performing a kind of lazy evaluation).

For instance, in order to display the geometric locus of points such that the
product of their distances to two given fixed points is constant, one may pro-
ceed by constructing, first, two non-oriented segments BD, AC such that the
product of their lengths is equal to a fixed quantity. One of the segments has
a free endpoint, say D, on the line BD. Then two base points F1, F2 are con-
structed and two circles around the fixed points, with radius equal, respectively,
to the length of AC or BD. Finally, one searches for the locus of points that are
simultaneously in both circles, when D moves on the line BD.

Now Cabri and Cinderella output (according to the different relative posi-
tions of F1, F2) the graphics shown in the figures (see Fig. 3 for an output from
Cinderella or Fig. 4 for Cabri, in a different position). Their behavior is similar:
Cabri requires the user to select both points on the intersection of the two circles
to achieve just one oval of Cassini, while Cinderella outputs the same single oval
selecting just one of the intersection points (but it does not find the two ovals

Fig. 3.
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Fig. 4.

even if the two intersection points are selected). This is due to the limitations of
their approaches concerning the compromise between continuity/determinism,
which in the case of Cinderella implies considering complex coordinate solutions
for the locus point, constrained, by construction, by several algebraic conditions.
Thus, in Cinderella, its strategy of returning loci as the positions only accessible
by real continuous moves where the dependent point has real valued coordinates,
sometimes avoids their correct generation. See ([18], p. 137) for details.

On the other hand GDI obtains the actual full locus, the two Cassini ovals,
since it works at the symbolic level, transforming the input data into a set of
algebraic equations, then performing some elimination of the dependent vari-
ables and, finally, displaying them via an implemented connection to a standard
computer algebra package, see Fig. 5. It is rather simple, but standing on the
shoulders of giants.

Fig. 5.
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3 Loci Discovery

In the sequel, to describe a geometry problem by a finite set of polynomials,
we will only consider problems involving incidence, congruence and parallelism
relations. Given a geometric construction and a distinguished point, in order to
look for its locus with respect to some conditions, GDI begins by translating
the geometric properties into algebraic expressions, after selecting a coordinate
system. We use the field of rational numbers Q and C, the field of complex
numbers, as an algebraically closed field containing the former. The collection
of construction properties is then expressed as a set of polynomial equations

p1(x1, . . . , xn) = 0, . . . , pr(x1, . . . , xn) = 0,

where p1, . . . , pr ∈ Q[x1, . . . , xn]. Thus, the affine variety defined by V = {p1 =
0, . . . , pr = 0} ⊂ Cn contains all points (x1, . . . , xn) ∈ Cn which satisfy the
construction requirements, that is, the set of all common zeros of p1, . . . , pr in
the n-dimensional affine space of C describe all the possible positions of the
construction points. In particular, the positions of the locus point define the
locus we are searching for. Thus, supposing that the locus point coordinates are
xn−1, xn, the projection

πn−2 : V ⊂ Cn → C2

gives an extensional definition of the locus in the affine space C2. This projection
can be computed via In−2, the (n − 2)th elimination ideal of 〈p1, . . . , pr〉. The
Closure theorem states that V (In−2) is the smallest affine variety containing
πn−2(V ), or, more technically, that V (In−2) is the Zariski closure of πn−2(V ).
So, except some missing points that lie in a variety strictly smaller than V (In−2),
we can describe the locus computing a basis of In−2. This basis is computed as
follows: given the ideal 〈p1, . . . , pr〉 ⊂ Q[x1, . . . , xn], let G be a Gr̈’obner basis of
it with respect to lex order where x1 > x2 > . . . > xn. The Elimination theorem
states that Gn−2 = G ∩ Q[xn−1, xn] is a Gr̈’obner basis of In−2.

This approach can be illustrated with two different examples, each one ad-
dressing the two issues we have mentioned in the introduction: loci generation
for points we do not know how to construct and reutilization of loci for further
computations within GDI. First we will consider finding the locus of points B,
given a circle with center O and going through another fixed point U , such that
B is in the bisector of the points O, A (where A belongs to the given circle) and
such that the segments OB and AB are perpendicular (see Fig. 6).

In GDI, once points O, U are defined (and, in order to simplify the exposition,
taken as (0, 0) and (1, 0), respectively), a semi-free point A is constructed belong-
ing to the given circle. Then a new free point B is introduced, and, through the
Discovery menu, we impose two conditions on B, namely, the equality and per-
pendicularity of OB and AB. A set of equations is created (GDI automatically
assigns indeterminate coordinates to the given points, enumerate the different
components of the construction, and translates the constraints into algebraic
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Fig. 6. Finding the locus of B

equations) and then GDI interrelates with CoCoA or Mathematica (at user’s
choice) or via web (see below Section 6), and proceeds to eliminate all variables
but those of B. The result is, correctly, interpreted by GDI as a circle, centered
at the origin and of radius

√
(2)/2.

Fig. 7. The construction for Giering-de Guzmán’s theorem

A less trivial example of the above procedure could be using GDI to discover a
recent generalization of Wallace–Steiner theorem [14, 12]: Given a triangle ABC
and three directions, not all three equal, nor parallel to the triangle sides, find
the locus of points X such that its projections M, N, P along the three directions
determine a triangle of oriented area k (Fig. 7). Once the geometric construction
is done, the user imposes the condition that the oriented area of MNP is, say,
1, area(M, P, N) = 1. The geometric predicates are automatically translated
by GDI into polynomials, and CoCoA is used (in the background) to perform
the elimination task. Finally, the locus equation is returned to the dynamic
environment, where the curve is plotted (Fig. 8), yielding a conic, as stated by
Giering-de Guzmán’s theorem.
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Fig. 8. An ellipse (43890x2 − 16139xy + 143719y2 − 43890x − 76139y − 165360 = 0)
and a hyperbola (64470x2 + 87313xy − 521163y2 − 64470x + 323036y + 532680 = 0) in
Giering–de Guzmán’s theorem

If required by the user, the same method can be applied to obtain the equation
of the corresponding conic for generic input data. The output in this case is not
displayed here because of its length. Note that since the locus equation is now
known by the system, this new object can be used to construct new objects.
For instance, if the imposed condition was the alignment of M, N, P , GDI could
compute the envelope of lines MNP , a tricuspidal hypocycloid (Fig. 9).

Finally notice that, since we are working on the plane and with complex
geometry, the locus set will be, in general, either a curve or a finite set of points.
In the former case, the elimination ideal will be principal and, then its Gröbner
basis will have just one element. Otherwise, all equations appearing in the G–
basis will be required to describe the locus: for instance, one can construct the

Fig. 9. An envelope of lines MNP

Fig. 10. The equations of the circumcenter
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circumcenter of a triangle as the locus of points equidistant to the three vertices.
Obviously, the answer by GDI is not a single equation, but a pair of equations
on the coordinates of the circumcenter, with coefficients that are polynomials in
the indeterminate coordinates of the vertices. The intersection of the two curves
defined by these equations yields, of course, the circumcenter (Fig. 10).

4 The Algebraic Approach to Automatic Theorem
Proving

For the last 20 years, symbolic algebraic techniques have been successfully used
for automatically proving theorems in elementary geometry (see [31] for an ex-
haustive repository of related papers). The practical interest of this goal (i.e to
automate, through the algebraic translation of hypotheses and theses, theorem
proving) could be related, for instance, to its potential applications in geometric
constraint solving and parameterized CAD [15, 9, 10].

The algebraic approach roughly proceeds as follows. A geometric statement (a
finite set of hypotheses and a thesis) is translated into two multivariate polyno-
mial systems, H, T . The statement is declared to be true if the hypotheses variety
is contained in the thesis variety, V ar(H) ⊆ V ar(T ). Different approaches ex-
ist to test this inclusion in commutative/algebraic geometry, mainly Wu–Ritt
characteristic sets and Gröbner bases. Moreover, it usually happens that the
inclusion does not happen because of some small set of points; in this case the
algebraic approach takes care of detecting these degenerate cases that should
be removed from the hypothesis. Both methods work in an algebraically closed
field, so the decision about the truth of a geometric statement involves not only
real solutions, but the complex ones also.

In GDI, following this algebraic approach, and through the cooperation of the
graphic environment with a symbolic computation program (such as Mathemat-
ica or CoCoA, at user’s choice), the user can state and prove (opening a suitable
Menu) or disprove different conjectures on a given construction. As in the sec-
tions above, in GDI the construction steps (for the hypothesis) and the thesis
condition (chosen from a Menu) generate a file with algebraic equations, which
is then exported to the symbolic computation package, where it is subject to
some standard algebraic manipulation for theorem proving (see [26], [25] or [1]).
The output of the computation is visualized in a dedicated window, with some
indications about the validity of the theorem and of the degeneracy conditions.

Below we provide one example of this procedure. It concerns Pappus theorem
(see Fig. 11), where the thesis (of alignment of the three selected points P, Q, R)
is imposed clicking on a Menu command.

The output window shows the theorem is true under the disjunction of three
non-degeneracy conditions; it must be read as u2u3 	= 0∨u1u4−u4 	= 0∨u2u4 	= 0,
where ui are coordinates of some of the basic points of the construction. They
are labeled by GDI according to the order in which the points are introduced
and following some other simple rules (such as the ui’s represent free variables,
the xj ’s are dependent ones, etc.) that can be learned from GDI on–line manual.
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Fig. 11. Proving Pappus theorem

It is not important, therefore, to detail here the geometric meaning of these
conditions, since they are dependent on the order the construction has been
made in this particular case.

5 Discovering Through GDI

It is relevant to remark that GDI distinguished feature is that of discovering
complementary hypothesis, but not only for degenerate cases, when we have a
nearly true statement, but in a generally false statement, following the approach
of [26], where we send the reader for the algebraic theory behind it. Again, as
in the case of Proving, the user must perform the corresponding construction
in GDI and, then, manipulating the Discovery Menu, the user establishes a
conjecture on some elements of the construction. A file with the corresponding
algebraic data is sent to the symbolic computation engine associated to GDI
and, finally, a window with the result (additional hypothesis plus non-degeneracy
conditions) opens up.

In the first example (see Fig. 12), taken from [26], it is stated that the sym-
metrical images of a point, with respect to the three sides of a triangle, are on
a line. It is obviously false, but GDI finds, through algebraic manipulation, that
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Fig. 12. Discovering conditions for the alignment of the symmetrical points

it is true if the given point lies on the circle passing through the three vertices
of the triangle. It is not easy to guess this result without GDI’s help!

The following two examples come from mathematics education, more pre-
cisely, from the recent book by Richard ([27], on proof strategies in mathematics
courses, for students 14-16 years old. Richard’s book reports the results of a five
questions test (concerning proving strategies) which has been passed to a num-
ber of students. We have considered questions 1 and 3 as the more suitable both
for GDI characteristics (since questions 2 and 4 had some numerical coordinates
which where quite essential) and for exploring its performance on tasks that
have not been directly conceived for computer assisted instruction (since ques-
tion 5 was already designed to be worked out by means of a Dynamic Geometry
software). Question 1 presents the following situation (we are summarizing, for
our purposes, very much the content of the test): A circle of diameter AB, its
bisector d, a point X in the intersection of d and the circle. It asks the student
to consider which of the following statements (can be more than one) concerning
triangle ABC are correct and why.

– The construction is impossible
– The triangle is isosceles
– The triangle is equilateral
– It is a right triangle
– None of the above

GDI concludes, via Discovery, that the construction is possible, that the tri-
angle is isosceles and that it has at vertex X a right angle (Fig. 13). If we con-
jecture the triangle is equilateral, GDI answers, as well, that this is not correct,
see Fig. 14.

Of course, as it is in general the case with the algebraic approach to theorem
proving, GDI does not help much with providing a student-readable proof of
the result. But it helps, at least, with solving the different conjectures that one
might be considering during the heuristic phase of proving. Question 3 presents
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Fig. 13.

Fig. 14. The triangle ABX is not equilateral

a classical pseudo-construction (see Fig. 15): an isosceles triangle ABC, where
AB, AC are the two equal sides, and assumes that the two bisectors of an-
gles ABC and ACB intersect perpendicularly at an interior point X . Again,
it is required that the student considers the same set of possible answers as
above.

Here, GDI immediately shows that the construction is not possible under
these hypotheses, stating that there are no point in the locus (“No hay puntos
en el lugar”).

All these are quite simple examples, performed on a basic lap-top within a
few seconds. Their interest is, precisely, to show that our approach is successful
in many cases that appear naturally at school level, where GDI could be a
helpful tool for guessing and conjecturing (although not for providing conviction
or human acceptable explanations).

A final example of GDI discovery possibilities concerns a formula of Euler on the
relationbetweentheradiioftheincircleandtheexcircleofatriangle,andthedistance
between their centers. It is a casewhere it is verydifficult (except forEuler!) to guess
such a formula. This problem has been approached by Wang and Zhi [30], but for
automaticproving,givingexplicitlytheformulaofEuler(arguablynamedPoncelet’s
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Fig. 15. The construction for Question 3

theorembythem,seepagesmathworld.wolfram.com/EulerTriangleFormula.htmlor
enriques.mathematik.uni–mainz.de/intgeo/poncelet.html) and requiring to prove
its validity.

Here we proceed with GDI by constructing the center of the circumcircle as
the intersection of two perpendicular bisectors of two sides of the triangle, then
constructing the center of the incircle as a point equidistant to the feet of its
orthogonal projections over the three sides of the triangle. Finally, we ask GDI
to discover whatever relation it might exist among the variables representing the
coordinates of the circumcenter, the incenter and the vertices of the triangle.

In order to simplify the computation we have chosen (this is an option of
GDI) two vertices of the triangle to be the origin and the unit point in the x-
axis, and GDI assigns then (u5, u6) as coordinates for the third vertex, (u7, u8)
as coordinates for the incenter, and (u9, u10) for the circumcenter. The result
(via webDiscovery, see next Section) is displayed in the figure below.

Fig. 16. Trying to discover Euler formula
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Thus, if the triangle is not degenerate, we have obtained a collection of eight
polynomial conditions among u5 . . . u10, plus the condition u6 	= 0. Now it is
just a matter of rewriting these nine conditions in terms of the distance between
the two centers and the two radii. Currently it is not possible to automatically
perform such human-driven interpretation of the output, but GDI provides, as
well, a file with the algebraic output, so it is quite easy to perform (by the user)
the following elimination, yielding Euler formula (generalized in the sense that it
applies to all different incenters, and not just to the one interior to the triangle).

Use R::=Q[hu[5..10]drc];

Elim(h..u[10],Ideal(h u[6]-1,
d^2-((u[9]-u[7])^2+(u[10]-u[8])^2),
r-u[8],
c^2-(u[9]^2+u[10]^2),
2u[9] - 1,
-u[5]^2 - u[6]^2 + 2u[5]u[9] + 2u[6]u[10],
-u[5]u[6]u[7] + 1/2u[6]u[7]^2 - u[6]^2u[8] - 1/2u[6]u[8]^2 +
2u[6]u[8]u[10] + 1/2u[5]u[6],
u[6]^2u[7] - u[5]u[6]u[8] - u[6]u[7]u[8] - 1/2u[6]^2 + u[6]u[8],
1/4u[6]u[7]^2u[8] + 1/4u[6]u[8]^3 - u[6]u[8]^2u[10] -
1/4u[6]u[7]u[8] + 1/8u[6]^2 - 1/4u[6]u[8],
1/2u[6]u[7]^3 + 1/2u[6]u[7]u[8]^2 - 2u[6]u[7]u[8]u[10] -
3/4u[6]u[7]^2 - 1/4u[6]u[8]^2 + u[6]u[8]u[10] + 1/4u[5]u[6],
1/2u[6]u[8]^4 + u[6]^2u[8]^2u[10] - 2u[6]u[8]^3u[10] -
1/8u[6]^3 + 1/2u[6]^2u[8] - 1/2u[6]u[8]^2,
1/2u[6]u[7]u[8]^3 + u[5]u[6]u[8]^2u[10] - u[6]u[7]u[8]^2u[10]
- 1/4u[6]u[8]^3 - 1/8u[5]u[6]^2 +3/8u[5]u[6]u[8] -1/8u[6]u[7]u[8]
+ 1/16u[6]^2 - 1/8u[6]u[8]));

Ideal(1/2d^4 - d^2c^2 - 2r^2c^2 + 1/2c^4)
-------------------------------

6 webDiscovery

The GDI symbolic algorithms have been used to develop an Internet applica-
tion. webDiscovery (http://rosalia.uvigo.es/sdge/web/2D) is an open web–based
tool for automatic discovery in elementary Euclidean geometry. It accepts user–
defined geometric constructions, which are uploaded to a Java Servlet server,
where two computer algebra systems, CoCoA and Mathematica, return the dis-
covered facts about the construction. As a simple illustration, we consider a
triangle ABC and its circumcircle O. In order to discover the necessary con-
ditions for the (obviously false in general) collinearity of B, O and C, the user
makes a construction with GDI, outputs a text file with the algebraic informa-
tion, such as
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Points
C(u[1],u[2])
B(1,0)
A(0,0)
D(x[1],x[2])
E(x[3],x[4])
O(x[5],x[6])

LingProperties
Midpoint(D,B,A)
Midpoint(E,C,A)
Perpendicular(B,A,O,D)
Perpendicular(C,A,O,E)

LingConditions
Aligned(B,O,C)

DiscProperties

and then uploads it through the web. Then webDiscovery returns, via web, a
page containing the conditions for the collinearity, that is, the rightness of the
angle BAC and a degenerated condition (Fig. 17).

A final example deals with the celebrated MacLane 83 theorem [22], that can
be stated as follows: Consider eight points A, B,..., H such that the following (also

Fig. 17. The necessary conditions for the alignment of the circumcenter
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eight) triples are collinear ABD, BCE, CDF , DEG, EFH , FGA, GHB, HAC.
Then all eight points lie on a line. This is a controversial result: Dolzmann, Sturm
and Weispfenning [7] point out, without further discussion, that this theorem
holds in the real plane, but fails in the complex one, while Conti and Traverso
[6] consider it as “an example of an obviously false theorem that is true”. Wang
and Zhi [30] also consider it as a false theorem both over the complex and the
real numbers. Leaving aside reality issues, i.e. considering just the complex case
(as it is usual up to now in most theorem provers), we have attempted to verify
with GDI the truth/falsity of this result. But it is rather difficult to approach
it via the Prover, because it is precisely a theorem of non-constructible type
(one can not make a construction without actually placing all eight points on
a line). See [24] for further details on the solution of this theorem with GDI,
showing that it is much more feasible to study this theorem using the automatic
Discovery feature of GDI.

Since this approach consists of imposing some extra, hypothetical, conditions
on a construction, we can sketch the construction as above, namely, we construct
two free points A(u1, u2) and B(u3, u4) which define a line containing the point
D(u5, x1). A new free point C(u6, u7) is used to define line BC containing the
point E(u8, x2). Analogously, the line CD contains the point F (u9, x3), the line
DE contains the point G(u10, x4), and the line EF contains the point H(u11, x5).

There are eleven free variables in the above construction: A, B and C each
contribute with two new variables, while the other five points give only one
free coordinate each. Then the last three alignment conditions are imposed on

Fig. 18. Imposing the alignment of F , G and A in GDI
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the sketch by selecting the corresponding triple of points and declaring them as
collinear (Fig. 18).

For symbolic purposes, the sketch is internally (in GDI) translated as follows,
where A and B have been declared in the construction as the origin and the
x-axis unit point, without loss of generality and in order to reduce the number
of involved variables:

Points
A(0,0)
B(1,0)
C(u[6],u[7])
D(u[5],x[1])
E(u[8],x[2])
F(u[9],x[3])
G(u[10],x[4])
H(u[11],x[5])

Properties
Aligned(D,A,B) (0-x[1])*(1-0)-(0-0)*(0-u[5])
Aligned(E,B,C) (0-x[2])*(u[6]-1)-(u[7]-0)*(1-u[8])
Aligned(F,D,C) (x[1]-x[3])*(u[6]-u[5])-(u[7]-x[1])*(u[5]-u[9])
Aligned(G,D,E) (x[1]-x[4])*(u[8]-u[5])-(x[2]-x[1])*(u[5]-u[10])
Aligned(H,E,F) (x[2]-x[5])*(u[9]-u[8])-(x[3]-x[2])*(u[8]-u[11])

Conditions
Aligned(F,G,A) (x[4]-x[3])*(0-u[10])-(0-x[4])*(u[10]-u[9])
Aligned(G,H,B) (x[5]-x[4])*(1-u[11])-(0-x[5])*(u[11]-u[10])
Aligned(H,A,C) (0-x[5])*(u[6]-0)-(u[7]-0)*(0-u[11])

Let I be the ideal automatically generated by the eight polynomials (prop-
erties + conditions) in the ring R = Q[x1, . . . , x5, u5, . . . , u11]. GDI proceeds in
a mechanic way (at user’s request) towards the discovery of properties induced
on the eight points configuration after imposing the last three conditions. This
is (roughly) done by eliminating the (construction declared) bounded variables
xi in order to find necessary conditions expressed by means of the supposedly
free variables. This elimination ideal, computed with CoCoA in a few seconds,
is generated by 28 polynomials, say pi, i = 1, . . . , 28.

The vanishing of any of these polynomials, involving just the variables u5, . . . ,
u11, is a mere consequence of the proposed hypotheses and gives some necessary
conditions for the configuration to verify the construction and the extra condi-
tions. Now the surprise comes when we realize that the gcd of these polynomials
is u7. But u7 = 0 gives the collinearity of the eight given points! In fact, u7 = 0
expresses that point C is aligned with points A, B. Let us call qi, i = 1, . . . , 28
the polynomials such that u7 ∗ qi = pi. Therefore, if all the polynomials in I
vanish (i.e. if we are on the hypothesis variety) and some qi 	= 0, then u7 = 0,
that is, the theorem is true over the open set of the hypothesis variety described
by the union of qi 	= 0, i = 1, . . . , 28.
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Finally, as a personal and non–automatic remark, we might observe that
u5, u6, u8, . . . , u11 is a maximal set of 6 independent variables modulo I, and that
performing some algebraic operation (saturation), we get that Sat(I, Ideal(u7))∩
Q[u5, u6, u8, . . . , u11] is not zero (for instance, it contains q1 = −u5u6u8u11 +
u5u6u10u11 + u5u6u8 − u6u8u10 + u6u8u11 − u5u10u11 − u6u10u11 + u8u10u11 −
u5u6 + u6u10 + u5u11 − u8u11) which implies [25] that the theorem holds over
all components of the hypothesis variety where these variables (of number equal
to the dimension of the variety) remain independent; this fact (for some of us:
it depends on the different concepts of truth in theorem proving [6]) supports
calling this a generally true theorem.

7 Conclusions

Perhaps the most astonishing fact is that GDI performs quite well avoiding
some problems derived from continuity issues, opening new possibilities for loci
generation and for proving and discovering new results, from trivial facts to
rather complicated explorations in fairly open contexts –as we hope to have
exhibited through the many examples roughly described in this paper. But we
must humbly admit that this is mainly due to the high performance of the
current algebraic elimination engines and to the simple, but careful connection
of the graphic and symbolic engines. Currently we work towards enhancing GDI
and webDiscovery with new features, such as the capability to export/accept
geometric constructions coded in OpenMath.
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26. Recio, T., Vélez, M. P.: Automatic discovery of theorems in elementary geometry.
Journal of Automated Reasoning, 23, 63–82 (1999)

27. Richard, P.: Raisonnement et stratégies de preuve dans l’enseignement des
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Abstract. We investigate two important problems arising in Dynamic
Geometry, the Tracing Problem and the Reachability Problem. After pre-
senting purely algebraic algorithms for these problems, we give an alter-
native approach.

1 Introduction

In Dynamic Geometry geometric constructions are represented by Geometric
Straight-Line Programs (GSP). They consist of free points and dependent ele-
ments (like a line connecting two points, the intersection point of two lines, one
of the at most two intersection points of a line and a circle). An instance of
a GSP is an assignment of fixed values to all free parameters and choices (see
e.g. [10, 8]). Initially these values are elements of R. Let k be the number of free
points in the GSP and m − k the number of dependent elements.

Since we work on dynamic geometry, we have to formalize movements of con-
structions. This is done via continuous evaluations ([10]): Given are continuous
paths pi(t), t ∈ [0, 1], of the free points (i = 1, . . . , k).

A continuous evaluation under the movement {pi} is an assignment of con-
tinuous paths oj , j = k + 1, . . . , m, to all the dependent elements, such that for
all t ∈ [0, 1] the objects (p1(t), . . . , pk(t), ok+1(t), . . . , om(t)) form an admissible
instance of the GSP.

There are two problems arising naturally from this setup:

Problem 1. (Reachability Problem)
Given are two instances A and B of a GSP, where A is called starting instance
and B a final instance.

Decide whether there are paths {pi} of the free points for which a continuous
evaluation from A to B exists. In [10] it is shown by a reduction of 3-SAT that
this problem is NP-hard (in R).

Problem 2. (Tracing Problem)
Like in the reachability problem there are given a starting instance A and a final
instance B. Let pA be the position of the free points at instance A, and pB their
position at B. Furthermore, a movement {pi} of the free points from pA to pB

is given for which there is a continuous evaluation.
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Decide whether a continuous evaluation given by the paths pi and the starting
instance A ends at B. In [10] it is shown, again by a reduction of 3-SAT, that
this problem is NP-hard.

The Tracing Problem occurs in the following situation: Assume that a user of
a Dynamic Geometry software has done a geometric construction. Then what is
seen on the screen is an instance A of the GSP describing the underlying con-
struction. Now he drags a free point with his mouse. This describes a continuous
path of the free points: The path of the dragged point is piecewise linear whereas
the paths of the other free points are constant. The Dynamic Geometry software
has to decide which instance B should be drawn after the motion (and at all
intermediate positions).

A solution to the Reachability Problem could help in automated theorem
proving. Here a geometric problem is given as an instance A of a certain GSP.
If a probabilistic approach is used as in [7] one has to create instances B of
the geometric problem at random. For generating an instance, one has to assign
fixed values to all free parameters and also to the choices (e.g. one has to specify
which intersection point of a line and a circle is chosen). If one can reach the
instance B with a continuous evaluation starting at A we either have found a
counterexample and know that the conjecture is wrong or a “positive example”,
which increases the probability that the conjecture holds (see [7]).

There are some situations, where it is useful to consider complex coordinates
of the objects, too. For example, the complex Tracing Problem occurs when we
are dealing with singularities (e.g. the intersections of identic circles or lines):
Depending on the path p of the free variables, tracing along p might enforce us
to consider such degenerate situations (see Figs. 1 and 2): Let the free point P
move on the linear path p(t) =

(1.5
1

)
+ t ·
(−3

0

)
. Then at time t0 = 1

2 the point P
lies on the y-axis ly. Hence Q reaches the origin and the two circles are identic.
Thus we have a degenerate situation and the intersection point M is not defined.
One approach is to avoid a singularity S = p(t0) by bypassing it with a little
detour (through R2k), e.g. by modifying p in a neighbourhood of t0. Unfortu-
nately, this might be impossible as our example shows (see Figs. 1 and 2): By
construction, the dependent point Q is always incident to the line lx, and the
singularity occurs when Q is moved to the origin. Since Q has to stay on lx by
construction, the singularity S cannot be avoided by modifying the path p of
the free point P . A way out of this problem is to consider detours for which the
coordinates of the free points may have nonreal coordinates. Now the line lx of
our example becomes a two-dimensional object, and the point Q might be able
to bypass S without leaving lx. Additionally, if the singularity is removable, the
instance being reached after finishing the detour does not depend on the detour
itself (of course this is only true, if the detour does not “catch” other singular-
ities). This is an application of the complex Tracing Problem since we have to
trace the complex detour instead of the original real path p of the free variables.

The complex Reachability Problem seems to be useful for automated theorem
proving. This is due to the fact that if a theorem holds over C then it also holds
over R.
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l

C2

P

(0, 1)

ly

Q(0, 0)

C1

lx
(1, 0)

M

P ← FREE
lx ← JOIN((0, 0), (1, 0))
ly ← JOIN((0, 0), (0, 1))
l ← JOIN((0, 1), P )
Q ← MEET(l, lx)
C1 ← CIRCLE((0, 0), 1

2 )
C2 ← CIRCLE(Q, 1

2 )
M ← MEET(C1, C2)

Fig. 1. On the left there is a GSP, on the right there is drawn an instance of the GSP.
By construction Q has to stay on the line lx.

P

Q

P

Q
MM

p(t)

Fig. 2. A singularity occurs if the free point P is moved towards the y-axis

Concerning the Tracing Problem, switching to complex coordinates does not
cause many changes since we are tracing given paths. In contrast to this the
Reachability Problem over R and the complex Reachability Problem are some-
how different problems (see Fig. 2): In the real situation the right instance in
Fig. 2 cannot be reached from the left one, whereas it can be reached via a
complex path as described previously.

The geometric situation translates easily into an algebraic model where the
objects are numbers (real or complex) and the operations are +, −, ·, / and√ . We discuss decision algorithms for the Tracing Problem and the Reachabil-
ity Problem in this algebraic context. For the Tracing Problem we only allow
(piecewise) polynomial paths of the free variables.

In Sect. 2 we refine the model for Dynamic Geometry described on page 111
and explain the Tracing Problem and the Reachability Problem. In Sect. 3 we
describe an algebraic approach for both problems over R and over C. Unfor-
tunately the presented algoithms are just of a theoretical interest, they do not
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lead to practical methods. In Sect. 4 we consider the complex situation. We de-
scribe algorithms for the complex Tracing Problem (for polynomial paths of the
free variables leading only to finitely many degenerate situations) and the com-
plex Reachability Problem for GSPs with one free variable having finitely many
critical points. Here some basic concepts from complex analysis are used, and
Voronoi diagrams (see [9]) play an important role. We hope that we can extend
these ideas to algorithms which can be used in some Dynamic Geometry soft-
ware in the future. In the appendix the relation between continuous evaluations
and Riemann Surfaces is pointed out.

2 Some Basic Concepts from Dynamic Geometry

Geometric Straight-Line Programs. As mentioned in the introduction, geo-
metric constructions can be described by Geometric Straight-Line Programs
(GSP, [10, 8]). The objects are points, lines and circles (or more general conics)
with the standard geometric operations like computing the line connecting two
points, the intersection point of two lines or one of the at most two intersection
points of a circle and a line.

Here we regard an algebraic situation: Our objects are real or complex num-
bers with the operations +, −, ·, / and √ . Geometric Straight-Line Programs
in this context describe algebraic expressions like

√
z2 − 1 instead of geomet-

ric constructions. Important is that the instructions of a GSP are defined by
relations which is important for the √ -operation. If we regard complex num-
bers (K = C), we usually have two possible solutions (as long as the radicant,
i.e. the input variable, is not zero). Zero is defined not to be a valid input for
the √ -operation, since here the square-root-function is not analytic. In the real
situation (K = R) only positive numbers are valid inputs for the √ -operation.

An instance of a GSP Γ is an assignment of objects (in our casereal or complex
numbers) such that all relations given by the GSP Γ are fulfilled.

Example 1. The expression
√

z2 − 1 can be described by the following GSP Γ0:

z ← FREE
v1 ← z · z
v2 ← v1 − 1
v3 ← √

v2 (described by v2
3 = v2 and v2

>
�= 0.)

If K = C then (0, 0,−1, i) and (0, 0,−1,−i) are instances of this GSP, whereas
(1, 1, 0, 0) is not an instance. For K = R non of the three tuples is an instance.

Note 1. 1. For the operations +, − and · all inputs are “admissible”, and these
operations are deterministic: For each admissible input there is exactly one
“admissible” output.

2. The operation / only allows inputs (a, b), where b 	= 0. As +, −, · it is
deterministic.
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3. The only non-deterministic operation is √ . For a complex number z 	= 0 or
a real number z > 0 the instruction

w ←
√

z

has two possible outputs “+
√

z” and “−
√

z” (e.g. z = 4, then ±2 are the
two possible outputs).

4. Variables, which are created by the instruction FREE are called free vari-
ables. Elements created by +, −, ·, / or √ are called dependent elements
since they depend on their inputs.

Now we introduce the notion of critical points of a GSP. They play an important
role for the structure of the Tracing Problem and the Reachability Problem.

Definition 1. A point (p1, . . . , pk) ∈ Kk is a critical point of a GSP Γ with
k free variables z1, . . . , zk, if there is at least one “invalid” instance lying over
(p1, . . . , pk) ∈ Kk (i.e. the relations of Γ are fulfilled but at one dependent vari-
able

√
0 or a division by 0 occurs).

Example 2. The critical points of the expression
√

z2 − 1 are 1 and −1.

This definition also makes sense in the case K = R since if the first radicant of
a √ -operation becomes negativ during a continuous evaluation, it must have
been zero at some previous time.

If the GSP has just one free variable z and it is K = C, we can apply theorems
from complex analysis. By the identity theorem we get the following

Lemma 1. If K = C then the set of critical points of a GSP with one free
variable is bounded if and only if the number of critical points is finite.

Proof. The identity theorem from complex analysis tells, that if the set of critical
points has an accumulation point, then all points are critical points. So all points
are critical points (as e.g. in the expression

√√
z2 − z ) or they build a discrete

set. Since we are regarding expressions defined by a GSP we can exclude the
case where there are infinitly many critical points forming a discrete set. ��

Continuity. In Dynamic Geometry we are dealing with dynamic constructions:
If a free point is moved in a continuous way, the whole construction should follow
continuously. It means that whenever the free points move on continuous paths,
the dependent elements have to move on continuous paths as well (as long as
no critical point lies on the paths). This concept is formalized in the following
definition which is taken from [10].

Definition 2. Let Γ be a GSP having k free variables and m − k dependent
elements (w.l.o.g. let the first k variables p1, . . . , pk be the free variables and
ok+1, . . . , om the dependent ones). Furthermore for each free variable pi we are
given a continuous path pi(t) : [0, 1] → K.
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A continuous evaluation of the GSP Γ under the movement {pi(t)} is an
assignment of continuous functions

oi(t) : [0, 1] → K

for each i ∈ {k+1, . . . , m} (i.e. for each dependent element there is one function)
such that for all t ∈ [0, 1](

p1(t), . . . , pk(t), ok+1(t), . . . , om(t)
)

is an instance of the GSP Γ .

Remark 1. 1. If the GSP does not contain a √ -operation, then the values of
the dependent variables are determined by the values of the free variables.
Since +, −, · and / are continuous functions (as long as there is no division
by zero), there is exactly one continuous evaluation for a given continuous
motion of the free variables (avoiding a division by zero).

2. If the GSP Γ contains √ -operations, the values of the dependent variables
are determined by the values of the free variables up to a number of binary
choices, which correspond to the two branches of the √ -function. The de-
finition of continuous evaluation ensures that we always choose the “right”
branch and do not jump from one branch to the other one.

3. In the appendix is shown that whenever a starting instance is fixed for the
continuous evaluation (i.e. values for ok+1(0), . . . , om(0)) and we do not hit
a critical point, then there is exactly one continuous evaluation for the given
motion starting at this starting instance.

The Tracing Problem and the Reachability Problem. Here we give short
definitions of the complex tracing problem and the complex reachability problem.
Remember that we are regarding GSPs using the operations +, −, ·, / and √ ,
the object set is K ∈ {R, C}.

Definition 3. Given is a GSP Γ with k free variables and m − k dependent
variables.

1. The Tracing Problem:
Given is a starting instance A = (pA, oA) and a final instance B = (pB, oB)

of Γ . Furthermore we are given continuous paths p1, . . . pk : [0, 1] → K of
the free variables of Γ with (p1(0), . . . , pk(0)) = pA and (p1(1), . . . , pk(1))
= pB. Here we assume, that p1, . . . , pk are polynomials in t which are
described by their coefficients.

Decide: Is there a corresponding continuous evaluation from A to B1.
2. The Reachability Problem:

Given is a starting instance A = (pA, oA) and a final instance B = (pB, oB)
of Γ .

1 As long as there is no critical point on the path (p1(t), . . . , pk(t)) one “just” has
to decide whether the unique continuous evaluation under the movement {pi(t)}
starting at A ends at B (see Remark 1).
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Decide: Are there continuous paths pi : [0, 1] → K of the free variables for
which there is a corresponding continuous evaluation from A to B.

The difference between both problems is, that for the Tracing Problem, paths of
the free variables are given, whereas for the Reachability Problem they are not
given (see Fig. 3).

Fig. 3. Exemplification of the difference between the tracing and the reachability
problem

3 Algebraic Solution for the Reachability and the
Tracing Problem

The Reachability Problem and the Tracing Problem can be decided in the follow-
ing way: In the first step the connected components of a suitable semi-algebraic
set are computed (see [2]). In the second step, it is checked whether the starting
instance A and the final instance B lie in the same component. A semi-algebraic
set is the set of points in an R

n satisfying a boolean combination of polynomial
equalities and inequalities.

The main problem of this approach is that it seems that these algorithms are
too slow to be adapted to a use in praxis in our context.

The Reachability Problem. First we focus on the real situation (i.e. K = R).
Afterwards we describe how the algorithm can be extended to the case K = C.
A GSP Γ defines in a natural way a semi-algebraic set RR(Γ ), as we first explain
with Example 1 from page 114. The following GSP Γ0 describes the expression√

z2 − 1:

z ← FREE
v1 ← z · z
v2 ← v1 − 1
v3 ← √

v2 (described by v2
3 = v2 and v2 > 0.)

The corresponding semi-algebraic set is

RR(Γ0) := {(z, v1, v2, v3) ∈ C
4 | v1 = z2 ∧ v2 = v1 − 1 ∧ v2

3 = v2 ∧ v2 > 0}.
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Now we regard the general case, where we are given an arbitrary GSP Γ . For
each instruction γ of Γ describing a dependent variable we define a term τ(γ)
as follows:

instruction γ term τ(γ)
a ← b + c a = b + c
a ← b − c a = b − c
a ← b · c a = b · c
a ← b/c b = a · c
a ←

√
b a2 = b ∧ b > 0

Furthermore let Γ have k free variables and m − k dependent ones defined by
the instructions γk+1, . . . , γm. Then it is

RR(Γ ) := {(p1, . . . , pk, ok+1, . . . , om) ∈ R
m | τ(γk+1) ∧ τ(γk+2) ∧ · · · ∧ τ(γm)}.

To decide the Reachability Problem we have to check whether the starting in-
stance A and the final instance B are in the same connected component of
RR(Γ ). This fact is stated in the following lemma.

Lemma 2. Let K = R and A and B two instances of the GSP Γ . Then there
is a continuous evaluation connecting A and B if and only if A and B lie in the
same connected component of RR(Γ ).

Proof. Let A and B be instances of Γ . Then by definition the coordinates of A
and of B fulfill the relations of Γ , hence A, B ∈ RR(Γ ). The same argument
shows, that a continuous evaluation is a (continuous) path in RR(Γ ) and each
path in RR(Γ ) is a continuous evaluation. This implies that there is a continuous
evaluation connecting A and B if and only if A and B lie in the same path-
connected component of RR(Γ ).

Since RR(Γ ) is a semi-algebraic set the path-connected components of RR(Γ )
coincide with the connected components of RR(Γ ) (see [2]).

The algorithm from [2] outputs for each connected component a boolean combina-
tion of polynomial equalities and inequalities, which describes this component. A
component contains the instances A and B if and only if the coordinates of A and
of B fulfill this boolean combination of polynomial equalities and inequalities.

If we are dealing with the complex Reachability Problem we can use the same
approach. Then the term τ(γ) of a √ -instruction γ = (a ←

√
b) is defined as

τ(γ) := (a2 = b ∧ b 	= 0). Additionally each complex variable v ofthe GSP Γ is
split into two variables vr and vi representing the real and imaginary part of v.
We call the corresponding semi-algebraic set RC(Γ ).

The Tracing Problem. As above we start with the real situation, and we
use the same GSP Γ0 as example to explain the algorithm. Additionally we are
given a polynomial path p(t) : [0, 1] → R of the free variable z. This defines the
following semi-algebraic set:

TR(Γ0) := { (t, z, v1, v2, v2) ∈ R × R
4 |0 ≤ t ≤ 1 ∧ z = p(t) ∧ v1 = z2 ∧

v2 = v1 − 1 ∧ v2
3 = v2 ∧ v2 > 0}



On the Decidability of Tracing Problems in Dynamic Geometry 119

More generally let Γ an arbitrary GSP having the free variables p1, . . . , pk and
the dependent variables ok+1, . . . , om. Let p(t) = (p1(t), . . . , pk(t)) : [0, 1] → Rk

be a polynomial path of the free variables. Using the same notation as in the
definition of RR(Γ ) we define

TR(Γ ) := { (t, p1, . . . , pk, ok+1, . . . , om) ∈ R × Rm | 0 ≤ t ≤ 1
∧ p1 = p1(t) ∧ · · · ∧ pk = pk(t) ∧ τ(γk+1) ∧ τ(γk+2) ∧ · · · ∧ τ(γm)}.

To decide the Tracing Problem we have to determine whether A and B lie in the
same connected component of TR(Γ ) and at A it is t = 0 and at B it is t = 1:

Lemma 3. Let A = (pA, oA) and B = (pB, oB) be instances of the GSP Γ and
p(t) be a polynomial path with p(0) = pA and p(1) = pB.

There exists a continuous evaluation along p(t) starting at the instance A,
and this continuous evaluation ends at B, if and only if A and B lie in the same
connected component of TR(Γ ), and at A it is t = 0 and at B it is t = 1.

Proof. The proof is similar to the proof of Lemma 2. Two continuous evaluations
could only meet at an instance where the radicant of a √ -instruction is zero.
Since these are excluded in TR(Γ ), a continuous evaluation along the path p(t)
is a connected component of TR(Γ ).

For the complex Tracing Problem we choose the same approach as for the com-
plex Reachability Problem and define the semi-algebraic set TC(Γ ).

4 Alternative Approaches

Here we give an alternative approach for the complex Tracing Problem and the
complex Reachability Problem. The presented methods might be a starting point
for finding algorithms which are fast enough for a practical usage. To the authors
opinion they take the structure of both problems more directly into account than
the algebraic approaches of Sect. 3.

In the beginning we discuss an algorithm for the complex Tracing Problem for
polynomial paths which do not contain critical points. Later we show how it can
be extended to polynomial paths containing a finite number of critical points.

In Sect. 4.2 we present an algorithm for the complex Reachability Problem for
GSPs with just one free variable having finitely many critical points. It reduces
the Reachability Problem to the Tracing Problem.

4.1 A Decision Algorithm for the Tracing Problem

An alternative way to decide the Tracing Problem is to follow the corresponding
continuous evaluation in discrete steps. This gives a discrete approximation of the
continuous evaluation, which is an advantage compared to the method presented
in Sec. 3. Here the main problem is to compute a suitable steplength.

Again we assume that the free variables of the given GSP move on a polyno-
mial path. First we regard the case where there is no critical point on this path,
afterwards we extend the algorithm to paths containing finitely many critical
points of the GSP.
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Tracing Without Critical Points. The Algorithm proceeds in three steps.

1. Check whether there is no critical point on the path p(t) of the free variables
of the GSP Γ .

2. Compute a suitable steplength for following the continuous evaluation.
3. Follow the continuous evaluation using the steplength from 2.

The three steps are discussed separately:

ad 1. To decide whether there is a critical point on a polynomial path is an
interesting problem itself. It can be formulated as follows:
At each instance (valid or invalid) lying over the path p the radicant of each√ -instruction and the denominator of each /-instruction must not be zero.
This can be formulated as a Tarski-formula with just one sort of quantifiers.

Example 3. Again we regard the GSP Γ0 describing the expression
√

z2 − 1
from page 114. The following formula is true if and only if there is no critical
point on the (polynomial) path p:

∀t ∈ R ∀z, v1, v2, v3 ∈ C=̂R2:(
0 ≤ t ≤ 1 ∧ z = p(t) ∧ v1 = z · z ∧ v2 = v1 − 1 ∧ v2

3 = v2
)

=⇒ v2 	= 0

ad 2. If there are no critical points on the path p of the free variables we know
by Corollaries 1 and 2 of the appendix that there is a unique continuous
evaluation of this path starting at a given instance A = (pA, oA).

Since the graph of this continuous evaluation is a path-connected compo-
nent of the compact set M of all instances lying over the path p, we know
that there must be a suitable steplength for the discrete approximation:

There are ν, η > 0 with the following property: If we fix an instance R =
(p01, . . . , p0k, o0k+1, . . . , oom) of the GSP Γ at time t0 ∈ [0, 1], then for each
t ∈ [0, 1] with |t− t0| < ν there is exactly one instance of Γ contained in the
circle with center R and radius η.

This phrase can easily be translated to a first-order-formula and the step-
length ν can be computed by quantifier elimination over the reals using the
intermediate value theorem.

Example 4. Again we regard the GSP Γ0 from example 1. The free variable
moves on the path p(t) = i · t + 2. Let η0 be the minimum distance of all
instances over p(0) = 2, which is ‖(2, 4, 3,

√
3) − (2, 4, 3,−

√
3)‖ =

√
6. The

steplength ν can be described as follows:

∃ν, η ∀t0, t, z0, v01, v02, v03, z, v1, v2, v3:(
0 < η < 1

3η0 ∧ ν > 0 ∧ |t−t0| < ν ∧ z0 = it0+2∧v01 = z2
0∧v02 = v01−1∧

v2
03 = v02 ∧ z = it+2∧v1 = z2∧v2 = v1−1∧v2

3 = v2 ∧‖(z0, v01, v02, v03)−
(z, v1, v2, v3)‖ ≥ η

)
=⇒ ‖(z0, v01, v02, v03) − (z, v1, v2, v3)‖ ≥ 2η

ad 3. We get the following algorithm (see Fig. 4). To simplify matters we assume
that 1

2ν ∈ Z.
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Fig. 4. Notation of the approximation algorithm

Reference-time t0 := 0;
Reference-instance R := starting instance A;
while t0 < 1 do

t0 := t0 + ν
2 ;

compute the unique instance F at t0 with smallest distance to R;
this will be the new reference-instance R.

Return (R = B)

Table 1. Complexity of the general algorithms for the complex Tracing Problem
(see [2]), l denotes the total number of √ - and /-operations; if the path of the free
variables is linear the max. degree d of the polynomials is 2

Algorithm No. of Vars. s No. of Pols. k Complexity
Step 1 of Sec. 4.1 2m + 1 2 + 2(m + l) sk+1dO(k) = mO(m)

Step 2 of Sec. 4.1 2
k1

+ 2 + 4m

k2

6 + 4m s(k1+1)(k2+1)dO(k1)O(k2) = mO(m)

ALg. from Sec. 3 2m + 1 2 + 2(m + l) sk+1dO(k4) = mO(m)2O(m4)

Remark 2. 1. The runtime of step 1 and of deciding whether a given ν is a
proper steplength in setp 2 is slightly better than the runtime of the al-
gorithm from Sec. 3 (see Tab. 1). The runtime of step 3 depends on the
steplength. Since non of the methods is elaborated for a practical usage we
omit a detailed runtime discussion.

(Remember, that the Tracing Problem is NP-hard).
2. There might be exponentially many critical points on a path p of the free

variables as the following example shows:

The expression
n
2
√

z
n
2 − 1 can be described by a GSP of length n + 1. Then

all 2
n
2 critical points lie on the path p : [0,

√
1
2 ] → C, t �→ (+

√
1 − t2 + it)8

whose graph is the unit circle2.
Over each regular point (i.e. noncritical point) there are 2

n
2 instances.

3. There are several numerical continuation methods which could also be ap-
plied to the Tracing Problem (see [1, 4]). They can also deal with bifurcation
points and critical points, but usually there is no guarantee for the correct-
ness of the solution.

2 One could also enlarge the GSP by a constant number of instructions and regard
the path q(t) = t.
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Fig. 5. The little crosses mark critical points; the path p contains one of them, which
can be omitted by following the dashed or dotted detour. The radius of the circle is
1
2 min{|x − y| |x 
= y critical points}.

Tracing with Finitely Many Critical Points. Now we consider the case in
which there are critical points on the path p of the free variables. Here there are
two quite different situations, which can be distinguished using Lemma 1 from
page 115: In the first case there is a finite number of critical points on p, in the
second case all points are critical points. We only consider the first one.

We begin with the case in which there is one singularity over the path p
of the free variables (it is clear that this can be generalized for finitely many
singularities).

First we restrict on GSPs with just one free variable. Let t0 be the time at
which the singularity occurs and as above let p be the path of the free variable.
Now we disturb p in a neighbourhood of t0 twice, so that we pass the critical point
once at both sides (see Fig. 5). This can be done by adding “small” piecewise
linear functions to p. Let the resulting paths be p′ and p′′, they can be chosen
such that they do not hit a singularity and also do not catch other singularities.
Now we “trace” p′ and p′′ starting at our given starting instance A. Let B′ and
B′′ be the instances at which we end. The residue theorem from complex analysis
(resp. Riemann Surfaces) implies:

If B′ = B′′, the continuous evaluation of our original path p has not hit an
invalid instance and we just have to check whether B′ is the given final
instance B.

If B′ 	= B′′, we must have hit an invalid instance, and we cannot solve the trac-
ing problem unambiguously.

If we are dealing with a GSP having more than one free variable, we can argue
as follows: Since we assume that the paths of the free variables are polynomials
in t, we can encode all these paths as a GSP (so that our original GSP just
becomes a bit longer). Hence we have just one free variable t left (the path we
regard is the embedding [0, 1] ↪→ C). Thus we have reduced the problem to the
situation with just one free variable.

Remark 3. An interesting problem is how to deal with infinitely many singular-
ities.

4.2 A Decision Algorithm for the Reachability Problem

Now we are going to describe an algorithm for deciding the reachability problem
for GSPs with just one free variable having finitely many critical points. It uses
the decision algorithm for the tracing problem from the previous subsection.
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Voronoi-Edges
critical points

bounding box
B

p1
A

Fig. 6. The left figure shows the Voronoi diagram of three points in a bounding box, in
the right figure there is a path p1 from A to B which is essentially composed of edges
of the Voronoi diagram

1. First we check whether the number of critical points is finite (see Lemma 1).
If it is true, we compute the critical points and a bounding box D = [−C, C]×
[−iC, iC] containing all of them in its interior.

2. We compute a finite set of paths which suffices to decide the Reachability
Problem. For this we use the Voronoi diagram (see [3, 9]) of the critical points
in the bounding box D. It is a planar graph having the following properties:
– The diagram has finitely many edges, and the edges are line segments,
– there lies no critical point on an edge of the diagram, and
– each facet (Voronoi region) contains exactly one critical point.

The paths basically consist of edges of the Voronoi diagram (see Fig. 6).
The details to this step are described in Sect. 4.3.

3. To decide the Reachability problem we have to trace all these paths.

In the first step it suffices to approximate the critical points up to the precision
1
4 · ε, where ε is the minimum distance between two critical points. Then the
Voronoi diagram of the approximated points still has the properties required in
step 2.

We briefly recall the notion of the Voronoi diagram of a finite set S =
{c1, . . . , cf} of points in the plane (see Fig. 6). In our case these are the critical
points of the GSP Γ . The Voronoi region of a point ci contains all points of
R2=̂C which are closer to ci than to all other points of S. The line segements (or
rays) separating two Voronoi regions are called Voronoi edges, their endpoints
are the Voronoi vertices. A formal defintion can e.g. be found in [9].

4.3 Details and Correctness of the Algorithm

We discuss the second step of the algorithm from 4.2 and the correctness of the
algorithm.

A first observation is that “similar” paths (i.e. homotopic paths) of the free
variable z lead to “similar” continuous evaluations (i.e. if they both have the
same starting instance, then they also have the same final instance). Roughly
speeking two paths having the same endpoints are called homotopic, if one of
them can be continuously transformed into the other one, and the transformation
leaves the endpoints of the curves fixed (see Definition 6 in the appendix). This
defines an equivalence relation on the set of continuous paths, the equivalence
classes are called homotopy classes.
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Let c1, . . . , cf be the critical points of the GSP Γ . Lemma 4 is a consequence
of Corollary 3 from the appendix.

Lemma 4. Let S = {c1, . . . , cf} be the set of critical points of a GSP Γ of
length m having one free variable z and m − 1 dependent variables w2, . . . , wm.
Furthermore let p : [0, 1] → C\S and p′ : [0, 1] → C\S be homotopic continuous
paths of the free variable z of the GSP Γ and A = (a1, . . . , am) ∈ Cm an instance
of Γ with a1 = p(0) = p′(0).

Then the continuous evaluations of p and p′ starting at A end at the same
instance of Γ .

Hence for deciding the Reachability Problem it is enough to take one path p :
[0, 1] → C \ {c1, . . . , cf} per homotopy class of paths [0, 1] → C \ {c1, . . . , cf}
starting and ending at the corresponding instances. The two paths p1 and p2 in
Fig. 7 are not homotopic and represent different homotopy classes.

p2
Voronoi-Edges
critical points

bounding box
B

viA

viB

p1

B

AA

Fig. 7. Two paths p1 and p2 from A to B are drawn, which we have to consider in
our algorithm. In the left figure the construction of the Voronoi vertices viA and viB

is indicated.

Since each Voronoi cell contains exactly one critical point, each homotopy
class has a representative which is essentially composed by a finite number of
Voronoi edges of the Voronoi diagram of the critical points c1, . . . , cf (see Fig. 7
for an example).

If the starting instance A = (pA, oA) (or the final instance B = (pB , oB)) does
not lie on a Voronoi vertex, we choose a vertex viA (resp. viB ) of the diagram
and regard the linear path γA (resp. γB) connecting pA and viA (or pB and
viB ). The vertices viA and viB can be chosen such that the linear paths γA and
γB do not hit critical points (see Remark 4 and Fig. 7).

There is still an infinite number of paths left which we have to consider. We
give a construction where it is sufficient to trace a finite number of edges of the
Voronoi diagram to decide the Reachability Problem:

Let l be the number of instances lying over a regular point3, and let VD be the
Voronoi diagram in the bounding box of the critical points of the GSP having
the Voronoi vertices v1, . . . , vg ∈ C = R2.

We define a graph G = (V, E) combining the idea of Voronoi diagrams and
coverings (resp. Riemann Surfaces of algebraic functions). The vertex set V

3 For each √ -operation, the number of instances is doubled unless the radicant is
zero.
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consists of l copies vi,1, . . . , vi,l of each Voronoi vertex vi. Two vertices vi,j and
vi′,j′ are connected by an edge if the following holds: There is a Voronoi edge in
the Voronoi diagram between the Voronoi vertices vi and vi′ and the continuous
evaluation of this Voronoi edge starting at the instance vi,j ends at vi′,j′ .

The Reachability Problem can be decided as follows:

1. We regard a linear path γA : [0, 1] → C from the starting instance A (or more
precisely pA) to a Voronoi vertex viA and another path γB : [0, 1] → C from
the final instance B to a Voronoi vertex viB . The corresponding continuous
evaluations starting at A resp. B end at the instances of the GSP which
correspond to the vertices viA,j resp. viB ,j′ of our graph G.

As long as there is no critical point on the linear paths γA and γB , it
does not matter which Voronoi vertices are chosen for viA and viB : For
another choice of vi′

A
(vi′

B
) the linear path connecting pA (pB) and vi′

A
(vi′

B
)

is homotopic to a concatenation of γA (γB) and some paths which follow
edges of the Voronoi diagram.

2. Check whether the vertices viA,j and viB ,j′ are in the same connected com-
ponent of the graph G.

Remark 4. 1. The Voronoi vertices viA (resp. viB ) can be chosen as follows:
If pA lies outside the bouding box, then viA is the nearest vertex on the
bounding box such that the line segment |pAviA | does not intersect the in-
terior of the bounding box. Otherwise pA is contained in a Voronoi cell. We
triangulate this cell by adding all edges connecting a vertex of this cell with
the critical point defining the cell. Then viA is the nearest Voronoi vertex
of the triangle containing pA. If in the first step of the algorithm in 4.2 the
critical points have been approximated, we have to choose viA and viB more
carefully.

2. The graph G describes somehow a discretisation of the Riemann Surface of
the algebraic function of the GSP.

3. In the following example the configuration space (i.e. the space containing
all instances of the GSP) of the GSP is not path-connected:

z ← FREE
v1 ← z · z
v2 ← √

v1

v3 ← v2/z

This GSP describes the expression
√

z2

z . If z 	= 0 we have v3 = ±1.

5 Outlook

There are several important problems remaining. In order to get an applicable
algorithm for the Tracing Problem, we have to find a “good” steplength for the
approximation of the continuous evaluation. Additionally it would be useful, if
this method could detect critical points on the given path of the free variable.
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For the complex Reachability Problem it would be nice to get some better
complexity bounds, since here the NP-completeness proof from [10] does not
work. Another interesting question concerning both problems is how to deal
with infinitely many critical points in practical applications.

Appendix: Continuous Evaluations and Coverings

Here we briefly explain the notion of coverings as they are used in the theory of
Riemann surfaces ([6, 5]). They are a useful tool for proving the uniqueness and
existence of continuous evaluations.

Lemma 4 from 4.2 is an easy consequence of Corollary 3. It is very crucial for
the second step of the algorithm presented in 4.2.

Definition 4. ([6], def. 4.1) Let X be a topological space. A topological space Y
together with a map π : Y → X is called covering of X, if π is continuous and
open and if for each point x ∈ X the inverse image π−1(x) is empty or discrete
in Y . The set π−1(x) is called fiber over x (see [5], p. 18).

A point y ∈ Y is called branchpoint of the covering π, if there is no neigh-
bourhood V of y such that π|V is injective (see [6], def. 4.3).

Example 5. Is X = C, then Y = C and π : Y = C → X = C, z �→ z2, is a
covering. Indeed π is continuos and open and π−1(z) consists of two elements if
z 	= 0 and π−1(0) = {0} contains one element. 0 ∈ Y = C is a branchpoint of
the covering (Y, π), since for each neighbourhood V ⊂ Y of 0 the restriction π|V
of π to V is not injective (ε and −ε are both mapped to ε2).

Fig. 8 shows the common visualisation of this covering, which is the Riemann
surface of the function √ : C → C.

It is important to remark that this surface does not have selfintersections.
The “dashed line” is due to the embedding into the R

3. Observe that the map
π is drawn as a projection.

The following lemma helps to understand the definition of coverings.

Lemma 5. ([6], thm. 4.2) Let X, Y be Riemann surfaces and p : Y → X a
non-constant holomorphic map. Then p is a covering.

We want to give some more standard definitions and properties of coverings
(see [6]) and apply them to the notion of continuous evaluations.

Definition 5. ([6], def. 4.7) Let X, Y and Z be topological spaces, π : Y → X
a covering and f : Z → X a continuous map. A lifting of f (corresponding to
π) is a continuous map g : Z → Y with f = π ◦ g, i.e. the following diagram
commutes.

Y

π

Z

g

f
X



On the Decidability of Tracing Problems in Dynamic Geometry 127

Fig. 8. Two-fold covering of C defined by Y = C and π(z) = z2 with the liftings γ̃1,
γ̃2, δ̃1 and δ̃2 of the closed curves γ and δ

Example 6. Again we regard the covering π : C → C, z �→ z2. In Fig. 8 all
liftings of the curves γ(t) = 1

2e2πit and δ(t) = 1
2e2πi(t− 1

2 ) + 1, t ∈ [0, 1], are
drawn. The liftings γ̃1 and γ̃2 of γ change the leaves of the covering π whereas
the liftings δ̃1 and δ̃2 of δ don’t.

Theorem 1. ([6], thm. 4.8) (Uniqueness of liftings) Let X, Y be Hausdorff-
spaces (i.e. topological spaces with a separation property) and π : Y → X a cov-
ering without branchpoints. Furthermore let Z be a connected topological space
(for example the interval [0, 1] in case we want to lift curves) and f : Z → X a
continuous map.

If g1, g2 : Z → Y are two liftings of f and is g1(z0) = g2(z0) for one point
z0 ∈ Z then g1 = g2.

Theorem 1 implies that liftings of curves (on which there lies no basepoint of a
branchpoint of the covering) are unique if e.g. the starting point is specified.

Corollary 1 of Theorem 1 is the exact statement of an obvious fact.

Corollary 1. (Uniqueness of continuous evaluations)
Let S ⊂ Ck be the set of critical points of a GSP Γ of length m having k free
variables z1, . . . , zk and m − k dependent variables wk+1, . . . , wm. Furthermore
let p = (p1, . . . , pk) : [0, 1] → Ck \ S be a continuous path of the free variables
z1, . . . , zk of the GSP Γ and A = (a1, . . . , am) ∈ Cm an instance of Γ with
a1 = p1(0), . . . , ak = pk(0).

If p̃ = (p1, . . . , pk, ok+1, . . . , om) : [0, 1] → Cm and p̂ = (p1, . . . , pk, o′k+1, . . . ,
o′m) : [0, 1] → Cm are two continuous evaluations of p = (p1, . . . , pk) starting
at A then p̃ = p̂.

Proof. (Induction by the length m of Γ )
W.l.o.g. let the free variables z1, . . . , zk be the first k variables of Γ . If m ≤ k
then Γ just consists of free variables and p̃ = p̂ is fulfilled.

Now let Γ be a GSP of length m > k. By induction we know, that

(p1, . . . , pk, ok+1, . . . , om−1) = (p1, . . . , pk, o′k+1, . . . , o
′
m−1),
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so that it remains to prove om = o′m. If the last instruction of Γ is one of the
operations +, −, · or /, om = o′m holds since these operations are determined by
their input variables. If the last instruction of Γ is a √ -operation w.l.o.g. having
the variable vl of Γ as input (so it is vl = zi for an i ∈ {1, . . . , k} or vl = wj

for a j ∈ {k + 1, . . . , m − 1}). By the assumptions we know that vl moves on
the continuous path α, where α = pi (if vl = zi) or α = oj = o′j (if vl = wj),
and α does not take 0 ∈ C as value. Since om and o′m are two liftings of α
(corresponding to the covering π : C → C, z �→ z2) with om(0) = o′m(0) = am it
follows by Theorem 1 that om = o′m. ��

Now we discuss the existence of continuous evaluations. We need the following
lemma, which is a consequence of Definition 4.11 and Theorem 4.14 from [6].

Lemma 6. The covering

π : C \ {0} → C \ {0}
z �→ z2

has the curve-lifting-property, i.e.:
For each continuous function u : [0, 1] → C \ {0} and each point y0 ∈ C \ {0}

with π(y0) = u(0) there is a lifting ũ : [0, 1] → C \ {0} of u with ũ(0) = y0.

Corollary 2. Existence of continuous evaluations
Let S ⊂ C

k be the set of critical points of a GSP Γ of length m having k free
variables z1, . . . , zk and m − k dependent variables wk+1, . . . , wm. Furthermore
let p = (p1, . . . , pk) : [0, 1] → C

k \ S be a continuous path of the free variables
z1, . . . , zk of the GSP Γ and A = (a1, . . . , am) ∈ Cm an instance of Γ with
a1 = p1(0), . . . , ak = pk(0).

Then there is a continuous evaluation p̃ = (p1, . . . , pk, ok+1, . . . , om) : [0, 1] →
Cm of p = (p1, . . . , pk) starting at A.

Proof. Corollary 2 can be proven in a similar way as Corollary 1 using Lemma 6.
��

For investigating the Reachability Problem the notion of homotopic curves is
helpful as seen in 4.2. Roughly speeking two paths with the same endpoints a,
b are called homotopic, if one of them can be continuously transformed into the
other one, and the transformation leaves the endpoints of the curves fixed.

Definition 6. ([6], def. 3.1) Let X be a topological space and a, b ∈ X. Let
c1, c2 : [0, 1] → X be (continuous) curves from a to b. The two curves c1 and c2
are called homotopic, if there is a map H : [0, 1] × [0, 1] → X, called homotopy,
with the following properties:

1. ∀t ∈ [0, 1] : H(t, 0) = c1(t), i.e. for s = 0 we get the path c1.
2. ∀t ∈ [0, 1] : H(t, 1) = c2(t), i.e. for s = 1 we get the path c2.
3. ∀s ∈ [0, 1] : H(0, s) = a and H(1, s) = b, i.e. the endpoints a and b of c1

and c2 are fixed.
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This defines an equivalence relation on the set of continuous paths [0, 1] → X ,
i.e. two paths c1, c2 : [0, 1] → X are equivalent if and only if they are homotopic
(see [6], Thm. 3.2).

The equivalence classes are called homotopy classes. Using the following theo-
rem it can be shown that the continuous evaluations of homotopic paths starting
at the same instance have the same final instance.

Theorem 2. ([6], thm. 4.10) (Lifting of homotopic curves) Again let X and Y
be Hausdorff-spaces and π : Y → X a covering without branchpoints. Let a, b ∈
X and â ∈ Y with π(â) = a. Additionally a continuous map H : [0, 1]×[0, 1] → X
is given with H(0, s) = a and H(1, s) = b for all s ∈ [0, 1]. We define

us(t) := H(t, s)

and assume that each curve us can be lifted to a curve ûs with starting point â.
Then û0 and û1 have the same endpoint and they are homotopic.

Corollary 3. Let S ⊂ C
k be the set of critical points of a GSP Γ of length m

having k free variables z1, . . . , zk and m − k dependent variables wk+1, . . . , wm.
Furthermore let p = (p1, . . . , pk) : [0, 1] → Ck \ S and p′ = (p′1, . . . , p′k) : [0, 1] →
Ck\S be homotopic continuous paths of the free variables z1, . . . , zk of the GSP Γ
and A = (a1, . . . , am) ∈ Cm an instance of Γ with a1 = p1(0) = p′1(0), . . . , ak =
pk(0) = p′k(0).

Then the continuous evaluations of p and p′ starting at A end at the same
point.

Proof. Corollary 3 can be proven in a similar way as Corollary 1 using Thm. 2.
��
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Abstract. This paper proposes a geometric-object-oriented language
for symbolic geometric computation, reasoning, and visualization. In this
language, geometric objects are constructed with indefinite parametric
data. Modifications and basic operations on these objects are enabled.
Degeneracy and uncertainty are handled effectively by means of impos-
ing conditions and assumptions and geometric statements are formulated
by declaring relations among different objects. A system implemented on
the basis of this language will allow the user to perform geometric com-
putation and reasoning rigorously and to prove geometric theorems and
generate geometric diagrams and interactive documents automatically.
We present the overall design of the language, explain the capabilities,
features, main components of the proposed system, provide specifica-
tions for some of its functors, report our experiments with a preliminary
implementation of the system, and discuss some encountered difficulties
and research problems.

1 Introduction and Motivation

The axiom system of geometry developed since Euclid and finalized by David
Hilbert [3] not only laid a solid foundation for elementary geometry, but has also
become a model of axiomatization for modern mathematical reasoning. However,
as pointed out first by Wen-tsün Wu [10], Hilbert’s axiom system is far from being
rigorous and in fact it is very difficult (if possible at all) to establish an axiom
system under which geometric problems may be stated rigorously according to
Hilbert’s axiomatic approach. The reason is that geometric relations, axioms, and
theorems are usually stated under certain not explicitly mentioned assumptions
that the considered geometric configurations are in generic position. For example,
while speaking about a triangle, one implicitly assumes that the triangle does
not degenerate to a line. Otherwise, subsequent geometric constructions such
as of the orthocenter and circumcircle of the triangle cannot proceed. Axioms
and theorems about this triangle may be false or become meaningless in some
degenerate cases.

Degenerate cases and conditions did not draw much attention of classical
geometers. This is in accordance with the tradition of mathematics in which
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the treatment of special and trivial cases is often ignored. The situation is to-
tally different when our concern is how to represent and manipulate geometric
objects and how to perform computation and reasoning with them on modern
computer. In this case, to ensure the involved manipulation and computation
correct and rigorous in the logical sense, we must deal with all the degenerate
cases. Moreover, geometric objects under consideration are usually indefinite and
symbolic. For instance, while speaking about a circle, we may mean a general
circle without specifying its radius and center numerically. How to handle such
symbolic geometric objects effectively, how to perform computations with them
symbolically, and how to reason about them correctly are some of the questions
we are concerned with.

Although nondegeneracy conditions have been considered in most of the exist-
ing geometric theorem provers [2], there is little investigation on the foundation of
computer-based geometry, for which a formal and comprehensive language must
be developed so that symbolic geometric objects and relations may be specified,
represented, visualized, and manipulated and computation and reasoning with
them can be performed correctly and effectively even in the presence of uncer-
tainty and degeneracy. Such a language should also be capable of representing
and processing geometric knowledge. A software system developed on the ba-
sis of this language will have applications in diverse areas of modern geometry
engineering such as CAGD, geometric modeling, computer vision, and computer
graphics, in addition to geometry research and education.

The purpose of this paper is to propose such a language, that is geometric-
object-oriented, referred to hereafter with its acronym Gool. Our emphasis here
is placed on the design methodology and implementation of the language is in
progress. We will outline the overall design, capabilities, and features of Gool in
the next section, describe its main components in Sections 3 and 4, with specifica-
tions for some of the functors. In Section 5, we will discuss some implementation
issues and report our experiments with a Gool prototype. Some difficulties and
challenges encountered in the development of Gool will be addressed in Section
6. The paper will end with a brief discussion on a few technical problems for
future research.

2 Overall Design of Gool

We consider Gool both as a language and as a system. As a language, its basic el-
ements are symbolic geometric objects (i.e., geometric objects whose shape, size,
and position are not numerically specified) and the language is oriented around
these objects. Gool is regarded as a special kind of object-oriented language (OOL
for short) because it is geometric-object-oriented (see Section 6.1) and has al-
most all the attributes of generic OOL. Generic OOL has many standard and
perfect properties such as strong and strict structure, hierarchical encapsulation
and hiding (to protect information), miscellaneous method overloading (satis-
fying different requirements), and classified polymorphic inheritance (ensuring
easy deriving of new objects) that Gool will need. As a special instance of OOL,
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Gool keeps most of these properties: every geometric object is strongly typed
with information entries and miscellaneous methods, information can be pur-
posely encapsulated and hidden in, methods can be overloaded with the same
function names but different arguments, and many kinds of subobjects or new
geometric objects can be derived or inherited from the known geometric objects.

In addition to the object-oriented paradigm, the design of Gool also follows
the principles outlined below.

Gool is an interpreting language, like the batch process in DOS and the shell
language in Unix/Linux. For such a language, programs need not be compiled
before they are executed. The user may simply read a command or a segment of
program statements into the shell and the shell will interpret and execute it and
output the results. Interpreting languages have many advantages: for example,
they are simple and intuitive and the user can easily know what a program does
and can modify the running program quickly and dynamically. This kind of lan-
guages may work sometimes in low efficiency and thus have limited applicability
for real-world problems, but they are adequate for our purpose of exploration
on the foundational aspect of geometry software design.

Gool is class-based: it is based on various classes, which represent different
classes of geometric objects and relations. However, the user of Gool does not
need to use the formal syntax such as

class circle {
data type data
method type method name(method args )

...
}

to define geometric objects. Symbolic geometric objects and relations may be
embedded in the core of Gool. When the user wants to define an object, he or she
only needs to specify some parameters to a built-in function; then the geometric
object will be defined automatically as wanted. Although Gool is object-oriented
and has polymorphism and inheritance, its inheritance is not explicit. This means
that there is no need for the user to derive new objects explicitly with the syntax

class sub class extends parent class { · · · · · · }
because such inheritance may also be embedded in Gool. The user can get the
inherited objects by giving some values to the parameters of a built-in function.

Gool is a special-purpose language/system: it is not for common programming
and general problem-solving, but for doing geometry in two-, three- or higher-
dimensional Euclidean or projective space. This language or system is designed
specifically for constructing symbolic geometric objects (such as circles, triangles,
polygons, and spheres) with uncertain data and indefinite parameters, manipulat-
ing the constructed objects (e.g.,modifying parts of themby changing some of their
parametric values), calculating basic geometric quantities (such as the perimeter of
a triangle and the volume of a tetrahedron), visualizing two- or three-dimensional
geometric objects, and performing various kinds of exact computation and formal
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reasoning in elementary geometry. An ideal version of Gool may become a powerful
software tool for geometry research, education, and application.

General-purpose computer algebra systems have been widely used because of
their capabilities and power for symbolic, algebraic, and numeric computation,
graphic representation, document processing, and high-level functional program-
ming. It is desirable that some of these capabilities be integrated into Gool to
support geometric computation and reasoning. However, at this early stage of
our investigation we have no intention to implement any standard module for
symbolic and algebraic computation because of the inherent difficulties and nec-
essary effort required for the implementation. We suggest to make use of those
modules that have already been available in many of the computer algebra sys-
tems, such as Maple and Mathematica, by creating an interface. The dependence
of Gool on a specific computer algebra system may be dropped at a late stage
by supplying the symbolic and algebraic computation modules.

In what follows, we list some of the expected capabilities and features of Gool.

– It can represent and construct symbolic geometric objects, such as points,
lines, segments, circles, triangles, and polygons, with built-in information
entries and computational methods. Such entries may cover information
about properties, well-known facts, remarkable theorems, and history back-
ground about the objects, subobjects and objects derived from them, as-
sumptions and conditions generated automatically or provided by the user,
internal relations among subobjects and derived objects, and external re-
lations with other objects. We may name some of the typical informa-
tion entries as representation, derivedObject, condition, assumption,
property, knowledge, internalRelation and externalRelation (see Sec-
tion 3.2 for details). In particular, it is necessary to include the condition
entry, that collects nondegeneracy conditions about an object during its con-
struction for late use. This is the first step of taking nondegeneracy condi-
tions into account. Every geometric object in Gool is strongly typed, ensuring
that all manipulations are performed correctly. Algorithms are built-in for
the involved computation and reasoning within the object and to handle the
conditions and assumptions.

– Constructed objects may be easily modified, for example, by renaming sym-
bols, changing parametric values, assigning new values to parameters, and
adding or removing properties, conditions, and assumptions. Consistency
checking after the modification may be done effectively and automatically.

– Basic geometric operations such as intersection, union, conversion, and cal-
culation (of area, volume, offset, and convex hull, etc.) with constructed
objects may be performed efficiently and correctly.

– Relations among different geometric objects may be declared and their
consistency may be efficiently checked. With these relations, geometric state-
ments, propositions, and theorems may be formulated using a simple syntax.

– Advanced methods and techniques are implemented to prove known
geometric theorems, to discover new ones, to verify the consistency of geo-
metric relations, and to derive new geometric properties.
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– Symbolic geometric objects may be visualized and displayed on the screen.
Automatically generated diagrams can be manipulated, modified, and ani-
mated with mouse clicks and dragging.

– Geometric knowledge (such as well-known facts, remarkable theorems,
historical background, and literature information) can be represented and
managed, allowing indexing and searching.

– Geometric uncertainty and degeneracy are handled systematically and ef-
ficiently. Degeneracy conditions may be generated, collected, and analyzed
with different techniques and heuristics, and their geometric meanings may
be interpreted in most cases.

We group Gool into seven main components, a core and six modules of func-
tors : constructors, modifiers, declarers, operators, reasoners, and visualizers, in
accordance with the capabilities and features listed above. We will discuss our
primitive ideas about each component: what it looks like and what it does. Some
of these ideas have been explained in [9]. It is Kutzler [6] who first proposed care-
ful translations of geometric statements into algebraic relations, taking degener-
acy into account. We are not aware of any other similar work on the foundational
aspect of geometry system design.

3 Gool Components: Core and Construction

In this and the next section, we describe the basic elements of each Gool compo-
nent and explain what they can do. We will also address some of the problems and
difficulties that may be encountered in the design and implementation of each
component and provide specifications for some of the functors. The focus of this
work is on the design issues of geometry software. Precise discussion on concrete
algorithms and functions to be implemented, their applicability and limitation,
and comparison of capability and performance between Gool and other existing
software systems cannot take place at this stage when the implementation of our
system has just started.

3.1 Core

As in any language or system, there should be a core which has its own internal
data and tree structures, syntax rules, and user interface. The core may han-
dle input and output streams, interaction between different components, and
interaction with external systems (e.g., interface with Maple for symbolic and
algebraic computation). It may also manage directory structure, file opening and
closing, memory and disk allocation, and foreground and background processing.

In the core of Gool should also be implemented a number of basic cate-
gories such as Point, Line, Segment, Triangle, and Circle in two- and three-
dimensional Euclidean space for geometric computation and reasoning. Basic
data types such as Boolean, List, Real, Array, Vector, String, and Table
should be defined and functions for handling these basic types should be imple-
mented. In order that every geometric object is visualizable, an internal graphic
representation of the object also need be maintained by the core.
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A simple programming language grammar such as the condition syntax if-
else, while-do repetition, for iteration, and break may be implemented and a
parser is needed to analyze the input sequence of statements. As these program-
ming elements are standard and available in almost all programming languages,
they are not our main concern in the present study.

3.2 Constructors

Symbolic geometric objects such as points, lines, segments, triangles, circles,
polygons, and algebraic curves and surfaces are the primary objects that Gool
will manipulate. The construction of these objects is the first task that the
system must carry out. We propose to group geometric objects into classes with
data and (methods for) operations, and all objects being strongly typed. The
data and operations for an object O may be partitioned into several entries
detailed below.

– representation: different representations of O (for example, a triangle may
be represented by its three vertices, or by two sides and their included angle,
or by two angles and their included side, and a circle may be represented
by its center and radius, or by its center and a point on the circle, or by
three distinct points on the circle). Since different representations of O may
correspond to different construction methods and operations, it is useful to
include several representations in the constructor.

– derivedObject: geometric objects derived from O (such as the area, perime-
ter, centroid, incenter, orthocenter, circumcenter, circumcircle, and inscribed
circle derived of a triangle).

– condition: conditions needed for the construction of O, so that O is well
defined (e.g., when a circle passing through three points is constructed, the
nondegeneracy condition that the three points are not collinear is added,
and when a circle is constructed with radius r, the condition r > 0 is added
to the condition list automatically).

– assumption: assumptions imposed on O by the user (e.g., the radius r of a
circle is greater than 2 and smaller than 5 and one side of a triangle is equal
to another side of the triangle).

– property: basic properties about O (e.g., a triangle has the properties that
the sum of its three internal angles is 180◦ and the sum of its two sides is
greater than its third side).

– knowledge: well-known facts, remarkable theorems, literature information,
and historical background about O (e.g., any side of a triangle is a segment,
the three vertices of a triangle are usually assumed noncollinear, there are
three escribed circles and one inscribed circles that are tangent to the three
sides of a triangle, and an angle cannot be trisected with ruler and compass).

– internalRelation: geometric relations among subobjects and derived ob-
jects of O (e.g., the diameter of a circle is twice the radius of the circle and
the area of an triangle is half of the product of the length of one side and
the length of the altitude on that side).
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– externalRelation: geometric relations between O and other objects (e.g.,
a circle is contact to another circle and tangent to a line and a triangle is
located inside a circle).

– method: methods required for computation and reasoning with O (e.g., con-
verting between different representations, computing derived objects, man-
aging knowledge and properties, verifying consistency of conditions and
assumptions, and handling internal and external relations).

As an example, we specify a constructor that constructs circles in plane
Euclidean geometry. We use PointnE, LinenE, TrianglenE, CirclenE, etc. to
denote the categories of points, lines, triangles, circles, etc. respectively in n-
dimensional Euclidean geometry. The notation o::T means that o is an object
of the category T or o is of type T. Moreover, | denotes the logical “or” and Real
the type of real numbers.

Constructor circle

circle.var (args) :: Circle2E {
var = PPP | CR | CP
args = A1, A2, ..., An

Case PPP {
n = 3
A1, A2, A3 :: Point2E
representation = [ CR, CP, ... ]
derivedObject = [ center::Point2E, radius::Real, diameter::Real,

area::Real, perimeter::Real, ... ]
condition = [ not collinear(A1, A2, A3), ... ]
assumption = [ ]
property = [ ]
knowledge = [ ]
internalRelation = [ diameter = 2*radius, area =π*radius2, ... ]
externalRelation = [ ]
method = [ Center, Radius, Area, . . . ]

Center(args c) :: Point2E { · · · }
Radius(args r) :: Real { · · · }

...
}
Case CR {

n = 2
A1 :: Point2E
A2 :: Real
representation = [ PPP, CP, ... ]
condition = [ A2 > 0 ]

...
}
Case CP {

n = 2
A1, A2 :: Point2E
representation = [ PPP, CR, ... ]
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condition = [ A2 
= A1 ]
...

}
}

When the class for a general circle is implemented, any concrete circle, sym-
bolic or numeric, generic or specialized, is an instance of the general circle,
obtained by giving values to some of the arguments of the class.

To implement a constructor, one has to deal with many technical issues such
as data structure, constraint (condition, assumption, and relation) handling, and
knowledge representation. We will discuss some of these issues in the last section.

3.3 Modifiers

After a geometric object is constructed, one may need to modify some part of the
object: to change its parametric values, to assign new values to its parameters,
and/or to add or delete assumptions. This will be done by modifiers. For a
concrete geometric object constructed by a constructor, some entries such as
assumption, knowledge, and externalRelation may be empty initially. New
assumptions, knowledge, and external relations may be added to these entries
and the existing ones may be removed or substituted by means of the modifiers.

Although there is no essential difficulty, it is not easy to modify a constructed
geometric object. The change of a single parameter of the object may result in the
change of other parameters and its subobjects and derived objects. So it has to be
ensured that the modification does not cause any inconsistency. For example, if it
has already been assumed that the radius of a circle is larger than 2 and smaller
than 5, then it should not be allowed to add the assumption that the area of the
circle is equal to 100. Moreover, a geometric object may have external relations
with other geometric objects. This makes modification more complicated because
modifying part of the geometric object may cause modifications for such relations
or even some parts of the other objects. To deal with this kind of problems, one
needs powerful mechanisms for consistency checking.

A geometric object O is said to be a parent of a symbol or another geometric
object P if P is derived from O or P is a parameter in O. The geometric object
or parameter to be modified is called target and the modification is to assign a
new value to the target. For example, let O be the center of a circle C. We may
assign a value P to O; then C is a parent of O, O is the target, and P is the
value to be assigned. A modifier may be defined as a class with the following
operations.

– collect: collect basic information about the target, its parents, and the
value. Such information includes the types, categories, value ranges, and
definitions of these objects.

– search: search for the target to be modified, those geometric objects that
are related to the target or its parents, and their relations and build up a
temporary collection of geometric objects and relations.
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– ascertain: from the temporary collection of objects and relations, ascertain
which geometric objects and relations may be affected when the modification
is made.

– check: check whether the type of the value matches that of the target and
whether the modification may lead to a contradiction.

– make: make the modification (addition, deletion, renaming, substitution, etc.,
as appropriate) if the types match and no contradiction is derived, or report
the types or the contradiction and the geometric objects and relations in-
volved and ask the user to interact in order to continue the modification
otherwise.

We do not give any example for the specification of modifiers. Since a tar-
get may have several parents that have relations with other geometric objects,
searching for such objects and ascertaining which ones will be affected by the
modification is a complicated process that needs effective algorithms. Consis-
tency checking is also one of the tough problems for the implementation of
modifiers.

4 Gool Components: Computation and Reasoning

4.1 Operators

Operators may be defined as procedures that perform operations such as inter-
section, union, conversion, and calculation (of center, area, volume, offset, etc.)
with geometric objects. As we have already emphasized, geometric objects under
discussion (even after instantiation) are symbolic, the radius of a circle may still
remain as a symbol without assigned numeric value and the vertex of a triangle
may have symbolic coordinates. Such objects are indefinite in character and how
to perform operations and computations with them efficiently and correctly is
one of the main questions.

We view an operator as a function that maps several geometric objects to a
single geometric object. It is nontrivial to determine the definition domain of the
function and the type of its value because of the uncertainty of the symbolic ob-
jects. Consider for example the operator intersection of two geometric objects.
Let Object2E denote the category of objects in plane Euclidean geometry. Since
the intersection of a point and another geometric object in Object2E may be
meaningless, the definition domain of intersection in plane Euclidean geome-
try is at most (Object2E\ Point2E)× (Object2E\ Point2E). Two indefinite cir-
cles, without being given numeric values to the symbolic radii and coordinates
of their centers, may coincide, may have no intersection, may intersect at two
points or at a single point, and the two intersection points may be complex or
real, depending on the size and location of the circles as well as the geometry-
associated field. So the intersection of two indefinite circles may be an empty
set, a single point, two points, or a circle. In general, it is impossible to give a yes
or no answer to the question whether two indefinite circles intersect. The value
returned by intersection may be a sequence of instances of CondType. This
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kind of uncertainty makes type checking a delicate issue for symbolic geometric
operations.

The following specification of intersection shows the complexity of opera-
tors and their implementation.

Operator intersection: Object2E × Object2E −→ Object2E

intersection (A1::Object2E, A2::Object2E) :: Object2E {
A1, A2 :: Circle2E | Line2E | Segment2E | · · ·
Case A1, A2 :: Circle2E

Intersection.CC(A1, A2)
Case A1 :: Circle2E & A2 :: Line2E

Intersection.CL(A1, A2)
Case A1 :: Line2E & A2 :: Line2E

Intersection.LL(A1, A2)
...

Intersection.CC(C1 :: Circle2E, C2 :: Circle2E) :: Object2E {
if isIntersect(C1, C2) == true then {

if C1 == C2 then
return C1 :: Circle2E

else if isContact(C1, C2) then {
...

return P1 :: Point2E
}
else {

...
return [ P1::Point2E, P2::Point2E ]

}
}
else if isIntersect(C1, C2) == false then

return Null
else { // cannot determine whether C1 and C2 intersect

...
return new CondType[ ]{{P1::Point2E, isContact(C1, C2),

Circles C1 and C2 are contact},
{[P1::Point2E, P2::Point2E],

isIntersect(C1, C2) && not isContact(C1, C2),
Circles C1 and C2 intersect but are not contact},

{Null, not isIntersect(C1, C2),
Circles C1 and C2 do not intersect}}

}
}

...
}
The above discussion is only for a simple case without any subsidiary con-

ditions or assumptions. In reality, it is more complicated to compute the in-
tersection of two geometric objects when conditions and assumptions are taken
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into account. It may have already been assumed that the two objects do not
intersect, so that their intersection set is empty. However, such an assumption
may be made somewhere implicitly or is a consequence of other conditions and
assumptions. Therefore, to draw the conclusion that the two objects do not in-
tersect, formal reasoning is required. In fact, most of the operations on indefinite
geometric objects require the support of practical reasoners (see Section 4.3).

4.2 Declarers

The main theme of geometry is to study properties of and relations among var-
ious geometric objects, so an ideal geometric software system should be capable
of specifying and manipulating such geometric relations. In Gool, geometric ob-
jects will interact each other through standard geometric relations specified by
declarers. A declarer is a procedure that implements a general geometric relation
with data and information entries and internal methods for operations, similar
to the predicates defined in GEOTHER [9].

Besides some of the operations such as search, ascertain, and check in
modifiers, declarers also need information entries about geometric meanings and
algebraic expressions of the declared relations. Data, information entries, and
(methods for) operations in declarers may be grouped as follows.

– value: value to be declared (e.g., intersect(O1,O2) may be declared to
have value Null, P :: Point2E, or another geometric object and isIntersect
(O1,O2) may be declared to be true or false :: Boolean).

– geometricMeaning: geometric meaning of the declared relation (e.g., the
declaration of intersect(O1,O2) to be P :: Point2E means that the two
objects O1 and O2 intersect at point P).

– algebraicExpression:algebraic representation of the declared relation(e.g.,
for two circles C1 and C2 centered at [x1, y1] and [x2, y2] with radii r1 and r2
respectively, the algebraic expression of the relation isContact(O1,O2) =
true is (r1 ± r2)2 = (x2 − x1)2 + (y2 − y1)2).

– method: methods for conversion, coordinatization, modification, and transla-
tion (e.g., converting geometric expressions to algebraic expressions and vice
versa, coordinatizing the parameters in the declared relation, modifying the
coordinates of the parameters, and translating the relation into statements
in natural languages).

– collect, search, ascertain, check, make: similar to those in modifiers.

Here is an example specification of a declarer that specifies the collinearity of
three points.

Declarer collinear

collinear (args) = val :: Boolean {
args = A1, A2, A3 :: Point2E
value = val :: Boolean
Case val == true {

geometricMeaning = [
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the three points A1, A2 and A3 are collinear ]
algebraicExpression = [

A1 x A2 y - A1 x A3 y + A2 x A3 y - A2 x A1 y + A3 x A1 y - A3 x A2 y = 0 ]
...

}
Case val == false {

geometricMeaning = [
the three points A1, A2 and A3 are not collinear ]

algebraicExpression = [
A1 x A2 y - A1 x A3 y + A2 x A3 y - A2 x A1 y + A3 x A1 y - A3 x A2 y 
= 0 ]

...
}
method = [Let, Coordinate, Convert, Translate, Modify, . . . ]

Let( args l ) { · · · }
Coordinate( args c ) { · · · }

...
}

}
Modifiers are used to modify geometric objects locally, while declarers declare

relations among different geometric objects globally. The relations produced by a
declarer are associated to all the involved geometric objects. Such relations have
to be well organized to facilitate the management and consistency checking.

4.3 Reasoners

As we have mentioned, several components of Gool need to handle geometric
constraints and to check their consistency. Moreover, one of the main themes of
geometry is to study relations among various geometric objects. Once fundamen-
tal geometric objects are constructed with conditions and assumptions, we may
use a simple syntax to formulate geometric statements, propositions, theorems,
etc. Advanced methods and techniques need be developed and used to han-
dle them: checking the consistency of geometric constraints, verifying geometric
properties, proving, generalizing, or discovering geometric theorems, and deriv-
ing new geometric relations and properties. We refer to functions implemented
for these tasks as geometric reasoners.

Geometric reasoning may be performed locally within one geometric object
(for example, verifying the consistency of assumptions) or globally about rela-
tions among different geometric objects. The language Gool will provide a basis
for further investigations and studies on computer-aided geometric reasoning.
As geometric conditions, assumptions, and relations involve both algebraic equa-
tions and inequalities, computation and reasoning have to be performed over the
field " of real numbers. This is an outstanding problem of research in the area
of computational real algebra and geometry.

As a concrete example, we now consider the specification for theoremProver,
a reasoner whose arguments are the hypothesis and conclusion of a geomet-
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ric theorem. The hypothesis and conclusion may consist of geometric relations
declared by declarers or algebraic relations (equations, inequations, and/or in-
equalities). Such relations will be transformed into a standard representation,
for instance, like the predicate representation of geometric statements in GEO-
THER [9], to facilitate different kinds of manipulations. The reasoner will be able
to translate the standard representation into geometric statements in different
natural languages, into logic formulas, and into algebraic expressions, to gener-
ate geometric diagrams automatically from the standard representation, and to
prove the theorem.

The reasoner theoremProver needs several elements. For instance, there
should be one or several effective procedures that can prove the class of geo-
metric theorems in questions. We refer to such procedures as provers. For el-
ementary geometry, one may implement advanced algebraic methods based on
Wu–Ritt’s characteristic sets [10], Buchberger’s Gröbner bases [5, 7], and other
triangularization techniques [8] or take the five provers available in GEOTHER
[9]. Other elements of theoremProver are discussed briefly as follows.

– theorem: standard representation of the theorem to be proved, which is
obtained from the input arguments by the standardizer.

– subsidiaryCondition: subsidiary conditions for the theorem to be true or
meaningful (usually they are nondegeneracy conditions collected and ana-
lyzed by the finder).

– standardizer: transform different kinds of arguments into a standard rep-
resentation of the theorem with hypothesis and conclusion.

– translator: translate the standard representation into geometric statements
in natural languages, into logic formulas, or into algebraic expressions.

– prover: provers implemented on the basis of algebraic methods for proving
the theorem.

– finder: procedures for handling (collecting, analyzing, and interpreting)
nondegeneracy conditions.

Denote by Theorem the category of geometric theorems in standard repre-
sentation and [ Relation2E] the category of lists of geometric relations and
algebraic equations and/or inequalities expressing geometric relations in plane
Euclidean geometry. A specification of theoremProver looks like the following.

Reasoner theoremProver

theoremProver( args, arg-opt) :: Boolean {
args :: Theorem | [ Relation2E ]
arg-opt :: String = AutoW | AutoG | AutoGC | AutoT | Manual

if standardizer( args )[0] == false then
System.exit(Error, standardizer( args )[1])

else
theorem = standardizer( args )[1]

subsidiaryCondition = [ ]

Case ( arg-opt == AutoW )
apply( Wprover, Wfinder )
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Case ( arg-opt == AutoG )
apply( Gprover, Gfinder )

...
Case ( arg-opt == Manual )

// use a prover selected by the user

standardizer( arg ) :: Array {
if args :: Theorem then return [ true, args ]
else if args :: [ Relation2E ] then

standardize( args )
return [ true, standard representation ]

else return [ false, wrong arguments ]
}
apply( arg prover, arg finder ) {

arg prover = Wprover | Gprover | GCprover | Tprover | · · ·
arg finder = Wfinder | Gfinder | GCfinder | Tfinder | · · ·
arg prover( theorem )
arg finder()

}
finder = [ Wfinder, Gfinder, GCfinder, Tfinder, · · · ]

Wfinder() :: Void {
collect()
ascertain()
handle()
subsidiaryCondition.add( · · · )

}
...

prover = [ Wprover, Gprover, GCprover, Tprover, . . . ]
Wprover( args T ) :: Boolean { · · · }

...
method = [ Let, Coordinate, Translate, Algebraic, Logic, . . . ]

Let( args l ) :: Void { · · · }
Algebraic( args c ) :: Void { · · · }

...

}
There are many technical issues for the implementation of geometric reason-

ers. We do not discuss those issues and refer to [2, 9] for more information about
geometric theorem provers and their implementation.

4.4 Visualizers

Without diagrams and visualization one cannot do geometry geometrically. The
capability of visualizing geometric objects is one of the key factors that can make
Gool attractive. Recall that geometric objects under manipulation are usually
symbolic and indefinite, while for their visualization one needs to take numeric
values for the symbolic parameters in each concrete instance. The parametric
data, information, and relations associated with the objects make it possible to
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keep any diagram of these objects general and symbolic, in the sense that the
diagram displayed on the screen may move dynamically according to the change
of values of the symbolic parameters (but satisfies the geometric constraints).
Changing the parametric values with mouse clicks and dragging thus allows the
user to modify and animate the diagram very easily at the running time. It is ob-
vious that visualization of indefinite geometric objects involves both numeric and
symbolic computation with algebraic equations and inequalities (over the field of
rational numbers, its algebraic extensions, and "). Usually one wishes to visualize
only the real part of the geometric objects, so effective methods for computation
over " are indispensable and need be incorporated in any practical implemen-
tation of Gool. Without entering into the details of specification for visualizers,
we list below some of the entries that should be contained in each visualizer.

– geometricObject: geometric objects to be visualized in one diagram, their
types and categories, and the arguments with which the objects are defined.

– constraint: (algebraic and/or geometric) constraints on the geometric ob-
jects in the diagram (i.e., different known relations among the objects and
possibly some unknown relations to be derived).

– property: global properties of the diagram such as its position, size, color,
label, transparency, and font size).

– method: methods for modifying the diagram such as converting the con-
straints, adding or deleting geometric objects, and modifying global proper-
ties of the diagram.

– operation: operations on the diagram for modification and animation with
mouse clicks and dragging.

5 Implementation and Experiments

To study and test the proposed language, we have implemented an experimen-
tal version of Gool. Although a considerable amount of effort has been made,
the current version of the system is still very primitive. It is now possible to
construct geometric objects such as circles, lines, and points in Euclidean plane,
to modify the constructed objects (e.g., changing the values of their parame-
ters), to perform basic operations such as intersection and calculation of area
and perimeter, and to verify geometric relations such as contact and tangent
between different objects. Some other capabilities such as acquiring geometric
information and algebraic expressions have also been implemented. Figure 1 is
the snapshot of a running session of the system.

Given the design specifications explained in the previous sections, the imple-
mentation of Gool is quite straightforward, but as usual it is a time-consuming
task and requires special care to handle all the technical details at the program-
ming level. In what follows, we discuss some general implementation issues. A
few technical difficulties and challenges will be addressed in Section 6.2.

To implement Gool, we need a programming language that has convenient
syntax structure, high efficiency of execution, multithreading support, ability
to interact with external systems, and rich graphic primitives. Java is such a



Towards a Geometric-Object-Oriented Language 145

Fig. 1. Running session of experimental Gool

language that satisfies most of these requirements, so it has been chosen as
our programming language. We have implemented a simple statement parser
that can analyze input commands whose names are fixed but arguments are
changeable. The user can interact with the system by means of this simple parser.
The implementation of a more sophisticated statement parser is now in progress.

An interface with Maple has also been implemented to deal with symbolic
and algebraic computation needed in Gool: computation requests are passed
from Gool to Maple, and the results of computation carried out in Maple are
returned to Gool. The performance of the interface is reasonable and can satisfy
our requirements at this early stage, but sometimes it works in low efficiency.
As frequent interaction between Gool and Maple is time-consuming, we have
implemented a small module for simple algebraic computations such as b + a −
2 a = b − a; thus only complicated computations are sent to Maple.

As symbolic computation is often complicated and time-consuming, we di-
vide the processes in Gool into two groups: foreground processes and background
processes (similar to a time-sharing operating system). Gool tasks are also di-
vided into two kinds: active tasks and inactive tasks. The former are the main
tasks that the user wants the system to carry out, and the latter are secondary
tasks produced automatically by the former. For example, when a geometric
object is being constructed, its construction is an active task, but computing its
subobjects and derived objects is an inactive task. While the active tasks engross
the shell, the inactive tasks remain in the task thread waiting for the idlesse of
the shell. When the shell is idle, the inactive tasks are brought into the shell and
executed. So tasks in Gool are well organized and harmonized.
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To give the reader a clearer idea about Gool, we reproduce some of our ex-
periments with its current version. For readability, the output shown below has
been reformatted using LATEX.

[I]< C1 := circle.CR(O[1,1], r);
[O]> Assumed r :: Real > 0 C1 :: Circle2E

[I]< algebraic(C1 );
[O]> (x-1)2 + (y-1)2 = r2 :: PolyEq

[I]< C2 := circle.PPP(A[0,0], B[a,0], C[0,b]);
[O]> Assumed a b :: Real 	= 0 C2 :: Circle2E

[I]< show(C2);
[O]> Class: Circle2E

Center: [a/2,b/2], Radius:
√
a2 + b2/2

Args: [[0, 0], [a, 0], [0, b]] Void

[I]< perimeter(C2);

[O]> π
√
a2 + b2 :: Real

[I]< L1 := line.PP(P1[a,b], P2[c,d]);
[O]> Assumed (c-a)2+(d-b)2 :: Real 	= 0 L1 :: Line2E

[I]< isTangent(C2, L1);

[O]> True: when
[b (d− b) − a (c− a)]2

4 [(c− a)2 + (d− b)2]
= 0

False: otherwise :: Boolean

[I]< let(b = a);
[O]> Void

[I]< intersection(C1, C2);
[O]> C1 if a = 2 and r =

√
2 :: Circle2E[

r2 − 2 ±
√
D

2 (a− 2)
,
r2 − 2 ∓

√
D

2 (a− 2)

]
if D ≥ 0 :: Point2E

∅ otherwise :: Null

where D = −(r2 − 2)(r2 − 2 a2 + 4 a− 2)

The output results in Figure 1 are printed in one-dimensional format (similar
to the Maple syntax) and it is not yet possible to display mathematical expres-
sions like

√
a graphically. It is expected that future versions of Gool will provide a

graphic user interface with flexible command lines for input and output, dynamic
visualization of geometric objects, and graphic display of mathematical symbols
and expressions. We are also going to provide the possibility of outputting the
results in LATEX source format, so that they can be processed with LATEX and
transformed into HTML format automatically.

From the implementation of the Gool prototype, we see that almost all the
specifications and techniques we proposed in Sections 3 and 4 are practical and
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they (in particular the way to handle uncertainty) work quite well in the pro-
totype. However, there are still some techniques, e.g., for consistency checking
and advanced reasoning, that remain to be tested.

6 Difficulties and Challenges

In the previous sections, we have presented the capabilities and features of Gool as
well as the specifications of some functors and preliminary experiments. Readers
interested in the design and implementation of languages and systems for doing
geometry might wish to know the difficulties and challenges we have encountered
in the development of Gool. In this section, we discuss some of them at the design,
programming, and computational levels.

6.1 Design Level

At this level, the main challenge we faced is how to formalize geometric con-
struction, computation, and reasoning and what programming model should be
chosen to realize a formalism on modern computer.

Formalizing Geometric Constructions with Case Distinction
As we have mentioned repeatedly, the main difficulty of dealing with symbolic
geometric objects comes from their uncertainty and degeneracy; the latter has
been widely known to the research community of automated geometric theorem
proving. In order to ensure that every symbolic geometric object be constructed
rigorously and completely, we have adopted a formalism that permits us to define
the object by enumerating all distinct cases. This new formalism applies equally
to the declaration of geometric relations and the operation among geometric
objects and can handle the degeneracy issue satisfactorily.

To explain our formalism, let C1, . . . , Ct be t (≥ 1) sets of geometric or alge-
braic conditions and for each i let Oi be a symbolic geometric object of type Ti

under the condition Ci. A composed geometric object O of O1, . . . , Ot is defined
as follows:

O =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O1 :: T1 if C1,

O2 :: T2 if C2,
...

...
Ot :: Tt if Ct.

In the above definition, “if Ci” is understood as “if the condition Ci is satisfied.”
In this formalism, a symbolic geometric object is always given with type and
condition. The condition may be omitted if it is a tautology. The definition
of composed geometric objects is similar to that of piecewise functions and a
composed object may consist of one or several symbolic geometric objects of
different types under different conditions. We call Oi a piece of O and Ci the
side condition of O for Oi (1 ≤ i ≤ t), and we refer to the formalism of dealing
with geometric objects, relations, and computations by distinguishing different
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cases as case distinction. The reader may have already noticed the use of this
formalism in our specifications and experiments in the previous sections.

By means of case distinction, the results of basic operation (e.g., intersection)
and computation (e.g., of the area or volume) of composed geometric objects
are still composed geometric objects and we may also have composed geometric
relations among composed geometric objects. Therefore, the remaining problem
is how to manipulate composed geometric objects and relations effectively. It
is clear that performing computation and reasoning with composed geometric
objects requires powerful mechanisms and algorithms to deal with complicated
side conditions and thus is substantially complex. However, the formalism of
case distinction allows us to construct and manipulate geometric objects rig-
orously and thus provides a theoretical basis for our design and implementa-
tion of a robust software system for doing geometry. Some of the techniques
from constraint logic programming [4] may be used to refine and implement our
formalism.

Geometric Object-Oriented vs. Geometric Object-Based
Having adopted the formalism of case distinction, we had to chosen a basic
programming model for specifying and implementing various modules, construc-
tions, and functions for our system or language. The basic elements of the lan-
guage are symbolic geometric objects and all operations, computations, and
reasoning are oriented around these objects. Every symbolic geometric object
need be strongly typed, should have an internal data structure for its rep-
resentation, and may be instantiated to specialized geometric objects. These
requirements lead to the notion of class representation of objects that occurs
in generic OOL: we may define a symbolic geometric object by means of a
class in OOL. It is therefore natural to choose OOL as the basic program-
ming model for our language Gool. The OOL paradigm also allows us to ef-
fectively implement the formalism of case distinction. Another reason for our
choice is that generic OOL has the property of strong hierarchy that subob-
jects can be derived from the parent object, inheriting and keeping all the
properties of the parent object. Subobjects may also have new properties, and
all the inherited properties and the new properties can be inherited by sub-
subobjects of the subobjects. Geometry also has this hierarchy property: e.g.,
ellipses can inherit quadratic curves, and circles can be derived from ellipses.
However, the hierarchy property of geometry has not been well understood
in the context of formal specification and programming. We have been try-
ing to identify and structure the hierarchy of geometric objects in two- and
three-dimensional Euclidean space for the development of our system, but we
have not yet worked out a reasonable frame. Further work on this aspect is in
progress.

In fact, the reader may also consider the proposed language as geometric-
object-based rather than geometric-object-oriented since all operations and ma-
nipulations are performed on the constructed geometric objects. However, our
language share many features with generic OOL and we prefer to refer to it as a
geometric-object-oriented language.
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6.2 Programming Level

In Section 5, we have discussed several implementation issues which are more
restricted to the programming aspects independent of geometry. Now we come
to some issues that are more geometry-related.

Data Structure and Organization
To realize the formalism of case distinction, we have created a data structure,
named CondType, that is represented by a triplet [value,cond, anno]. An in-
stance CT of CondType means that CT.value is attained when CT.cond is satis-
fied. In general, the first two entries combined have strong geometric meanings,
so the third entry is added to collect the meanings (represented in nature lan-
guage, logic formulae, etc.) for further use. As an instance can represent only
one component (one case), we build an array to cover all the cases. The reader
may revisit the specification of the operator intersection in Section 4.1 and
our experimental session in Section 5.

There are usually many external relations for a geometric object, so a good
data structure should be used to ensure convenient storing and efficient searching
and accessing. We have chosen to use a hash table to store the externalRelation
entries of a geometric object O. The key of an entry in the table is a preserved
relation predicate, and the corresponding element is an array — whose length is
changeable (Vector in Java) — of geometric objects which have relations with
O represented by the predicate. Types Hashtable and Vector are built in Java,
and available miscellaneous operations on them make it easy to access the ex-
ternalRelation entries.

Moreover, a geometric constraint may be represented by a logic formula, by
algebraic expressions, by a predicate specification, or by a nature-language state-
ment, and each representation has its own advantages and applications. Almost
all of them will be used in different places for different purpose, so an ideal data
structure for geometric constraints should contain all these representations. In
the Gool prototype, a constraint is represented by a quaternion. This represen-
tation is overequipped and not convenient for frequent usage.

From Specification to Java Code
We chose Java as our programming language for Gool because of its many attrac-
tive advantages. These advantages have helped us to tackle several tough issues
at the implementation level. For example, Java’s multithreading support makes
it feasible to take foreground and background processing heuristics into practice
and flexible interaction with external systems makes our implementation of an
interface with Maple easy. With the help of Java specialities, transformation
from specification into Java code is quite straightforward. Here we only point
out a couple of minor tricks to which one may need to pay attention at the
programming level.

Usually, after an object is constructed with Java class, each of its entries is
unchangeable. If one wants to modify any part of the constructed object, one
has to reconstruct the object with new parameters. In the Gool prototype, we
use real-time heuristics to avoid the reconstruction. When a geometric object is
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constructed with some parameters, we create a symbolic link to the parameters
for each entry without assigning any value. Based on the link and taking the
real-time values of the parameters, we can get the value of any entry.

There may be many derived objects that need be constructed, but not all of
them will be used in the following computations, so there is no need to construct
all the derived object along with the construction of a target object. Here we use
time-sharing heuristics: when a geometric object is being constructed, compu-
tations of its derived objects will be inactive processes with different priorities
which are given on the basis of their significance waiting in the threads line.
When the shell is idle, the process with highest priority will be brought in for
computation. The user can bring inactive processes into the shell manually.

6.3 Computational Level

To make computations efficient, we need to develop sophisticated algorithms
and use various heuristics to cope with problems caused by uncertainty and
degeneracy. The heuristics may help reduce the practical cost that we have to
pay for theoretical rigorousness and they work quite well in many cases.

Quantitative Complexity
The formalism of case distinction reduces the qualitative difficulty of dealing with
symbolic geometric objects to the quantitative complexity of doing geometric and
algebraic computation. The distinction of cases may take place in construction,
operation, and computation and thus may introduce many pieces of geometric
objects and relations with complicated side conditions. The manipulation of such
composed geometric objects and relations will involve extensive verification and
examination of the side conditions and may be very expensive computationally.
For instance, for comparing two indefinite points, there are three cases to return:
same, not same, and undetermined, and the last case consists of two cases: when
the two points are the same and when they are not the same. The quantitative
complexity of composed geometric objects and relations increases rapidly along
with the manipulation.

Algorithmic Sophistication
To handle the quantitative complexity of composed geometric objects and re-
lations with different representations for their pieces and side conditions, one
must design and implement highly efficient algorithms for the involved com-
putations. Such algorithms have to combine advanced techniques of handling
algebraic relations and to incorporate well-studied heuristics. In general, side
conditions in distinct cases may be expressed as implicit polynomial equations
and inequalities. The problem of checking the consistency and verify the rela-
tions of side conditions may be reduced to the problem of quantifier elimination
over ". The latter can be solved in principle, for example, by the method of
cylindrical algebraic decomposition (CAD) proposed by Collins and improved
by Hong and others [1]. However, in practice the CAD method is not efficient
enough for dealing with side conditions of composed geometric objects and rela-
tions, and the output of the method is often too complicated to be subsequently
used (according to our preliminary experiments).
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Side conditions usually contain many relations, but each of them may be
quite simple (e.g., linear or quadratic with a very few terms). Therefore, heuris-
tic simplification of the conditions must be done before any advanced method is
applied. Moreover, one should handle the equality relations by using more spe-
cialized methods such as an adapted version of the methods of triangular sets
and Gröbner bases prior to the use of CAD-type methods. It is not difficult to
imagine how sophisticated an efficient algorithm that integrates available tech-
niques to deal with geometric constraints is. One of our next tasks is to design
and implement such an algorithm; this will be discussed in Section 7.1.

Computational Difficulty
Even having an efficient algorithm implemented to deal with geometric con-
straints generated from side conditions, one still has to face the computational
difficulty inherent in geometric problems themselves. It is well known that sys-
tems of polynomial equations and inequalities, called semi-algebraic systems,
are difficult to solve. We believe that an adequate combination of the existing
methods and tools will allow us to approach the involved computations for fun-
damental objects and relations in plane Euclidean geometry, where constraints
are usually linear and quadratic. However, when working with geometry in high-
dimensional space, non-Euclidean geometry, or geometric relations of high de-
gree, we will encounter various difficulties for the involved computations. The
existing methods must be improved and new techniques have to be introduced.
Moreover, when coming to geometric diagram generation and animation, we will
need to handle geometric constraints dynamically in real time and more compu-
tational problems will occur.

Finally, we take the famous Thébault–Taylor theorem as an example to illus-
trate the process of handling geometric constraints.

1. Construct geometric objects and declare relations:
ABC:=triangle.PPP(A,B,C); AB:=line.PP(A,B);
AC:=line.PP(A,C); BC:=line.PP(B,C); D:=point(); let(onLine(D,BC)=true);
AD:=line.PP(A,D); C0:=CircumCircle(ABC); C1:=circle.CR(C1,r1);
C2:=circle.CR(T2,r2); assume(T2
=T3); C3:=circle.CR(T3,r3);
let(tangent(C2,AD)=true,tangent(C2,BC)=true,contact(C2,C0)=true);
let(tangent(C3,AD)=true,tangent(C3,BC)=true,contact(C3,C0)=true);
let(tangent(C1,AB)=true,tangent(C1,BC)=true,tangent(C1,AC)=true);

areCollinear(T1,T3,T3);

2. Collect constraints and build the constraint set:
{not collinear(A,B,C), A
=B, B
=C, C
=A, A
=D, onLine(D,BC),
tangent(C1,AB), tangent(C1,BC), tangent(C1,AC), tangent(C2,AD),
tangent(C2,BC), contact(C2,C0), T2
=T3, r2>0, r3>0, tangent(C3,AD),

tangent(C3,BC), contact(C3,C0)}
3. Remove redundant conditions:

Since A
=B, B
=C and C
=A are consequence of not collinear (A,B,C), and A
=D

is a consequence of not collinear(A,B,C) and onLine(D, BC), they are removed.
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4. Translate into algebraic expressions:
Reassign coordinates: A=[u2,u3], B=[-u1,0], C=[u1,0], D=[x1,y1], T2=[x2,y2],

T3=[x3,y3], T1=[x4,y4]
onLine(D,BC) -> y1=0
tangent(C1,AB) -> r12*(u32+(u1+u2)2)-((x4-u2)*u3-(u1+u2)*(y4-u3))2=0
tangent(C1,AC) -> r12*(u32+(u1-u2)2)-((x4-u2)*u3+(u1-u2)*(y4-u3))2=0
tangent(C1,BC) -> r12-y42=0
tangent(C2,AD) -> r22*((y1-u3)2+(x1-u2)2)-((y1-u3)*(x2-u2)-(x1-u2)*

(y2-u3))2=0
tangent(C2,BC) -> r22-y22=0
contact(C2,C0) -> (r0+r2)2-(x2-a)2-(y2-b)2=0 || (r0-r2)2-(x2-a)2-

(y2-b)2 =0
tangent(C3,AD) -> r32*((y1-u3)2+(x1-u2)2)-((y1-u3)*(x3-u2)-(x1-u2)*

(y3-u3))2=0
tangent(C3,BC) -> r32-y32=0
contact(C3,C0) -> (r0+r3)2-(x3-a)2-(y3-b)2=0 || (r0-r3)2-(x3-a)2-

(y3-b)2=0
not collinear(A,B,C) -> 2*u1*u3<>0
T2<>T3 -> x2-x3<>0 || y2-y3<>0

r2>0, r3>0

where the center [a, b] and radius r0 of C0 are known.

The theorem may be proved by deciding whether the conclusion relation is a
formal consequence of the hypothesis constraints, a job that can be submitted
to one of the algebraic provers.

7 Future Work

A complete implementation of the proposed system Gool requires an enormous
amount of effort and is our long-term project of research and development. Much
work remains and a number of challenging problems have to be settled. We
discuss some of these problems and the encountered difficulties that have not
yet been completely overcome. Some of them have been mentioned previously
and are on the top of our list of problems for future research.

7.1 Handling Geometric Constraints

From the previous discussions, we see that conditions and assumptions on geo-
metric objects have to be considered in almost all the components of Gool. It
is essential to have an effective way to handle such conditions and assumptions,
called geometric constraints. Not only powerful algebraic methods are needed
for computation and reasoning with polynomial equations and inequalities, but
also the geometric meanings of the constraints have to be conserved during the
computation. In the current version of Gool, a constraint is represented by a
quaternion, but this representation is somewhat overequipped. So a better data
structure, probably using hash tables, should be designed to represent the con-
straints both algebraically and geometrically with heuristic translation from one
representation to the other.
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Some assumptions, for example, a > 0 and −a < 0, may have the same mean-
ing, but are in different forms. A simple, heuristic, and efficient simplification
process should be undertaken regularly to remove redundancy in order to keep
the set of constraints as compact as possible. In our current implementation of
Gool, a set of criteria is used for constraint simplification in simple cases. More
advanced techniques are required to deal with complicated cases.

One of the main problems, as mentioned before, is to check the consistency of
(real) geometric constraints. This problem may be solved in principle by using
the existing methods of semi-algebraic system solving over ". Those methods
are known to have high computational complexity, so a key issue is practical
efficiency. The numbers of geometric constraints and of variables in our case are
usually large, but many of the constraints may be quite simple. It is therefore
necessary to adapt the known methods with new and heuristic techniques for
our purpose of efficient geometric constraint handling (simplification and con-
sistency checking). We are taking an incremental approach: first use heuristic
simplification, then try the methods of triangular sets and Gröbner bases to
handle equality constraints, and finally apply the complete method of CAD.

7.2 Managing Geometric Knowledge

There is no essential difficulty but quantitative complexity for geometric knowl-
edge management. An adequate data structure has to be designed to represent
geometric knowledge including well-known facts, remarkable theorems, and liter-
ature information, so that the existing database technology may be used. Exam-
ples of questions we may ask are what type of knowledge and information should
be collected, how to organize and structure them, and how to formalize geomet-
ric statements, so that they can interact effectively with other components in
a uniform environment. We propose a mixture of documenting text and formal
representation of geometric objects and statements, uniform with those in the
declarers, reasoners, and visualizers, together with reference keys, indices, and
URL links. This will allow easy cross-referencing, searching, sorting, translating,
and reformatting. A logical framework may be identified to formalize and model
the evolution of geometric knowledge.

It is expected that the system will be able to generate interactive documents
automatically from the built-in geometric knowledge and the results of computa-
tion and reasoning. Any geometric fact, proposition, or theorem in the documents
can be verified by the reasoners with a simple mouse click and automatically gen-
erated diagrams may be integrated into the documents. Web links will direct the
user to the original sources of information.

7.3 Keeping Gool Geometric

The high interest and attraction of geometry lie largely in its intuition and
figures. It is important that any geometric software system should maintain
the usual intuition and features of geometry. As an advanced tool, the system
should assist the user to do geometry more easily, more efficiently, and more
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productively by using the computing and graphic power of modern computers.
However, most of the computations in Gool are based on algebraic methods,
which may make geometric intuition and information lost. Therefore, we need
to conserve the geometric meanings of the symbolic parameters and algebraic
expressions as much as possible. For example, when “r :: Real >0” is assumed (as
in the Gool session at the end of Section 5), the information “r is the radius of the
circle C1” should be stored in the system and may be displayed whenever needed.

In general, it is not possible to interpret the geometric meaning of a ran-
domly generated algebraic expression. Nevertheless, the algebraic expressions
occurring in the computation for a geometric problem are obtained successively
from variables and initial expressions that have geometric meanings. By tracing
the computational steps together with search and comparison, one can figure out
the geometric meanings of meaningful algebraic expressions in many cases. For
instance, the expression of the area of a triangle in terms of the coordinates of
its vertices is rather large and it is difficult to know its geometric meaning only
from the expression itself without any additional information. However, if the
computational process (i.e., how the expression was obtained) is traced, then
it is no longer a problem to know that the expression represents the area of
the triangle.

The second author has used a number of heuristics for interpreting the geo-
metric meanings of algebraic nondegeneracy conditions in GEOTHER [9]. These
heuristics work quite well and may be generalized to deal with more complicated
cases. We believe that a good heuristic imitation of what geometers usually do
together with the support of algebraic methods and current computing technol-
ogy will make Gool a powerful and intuitive geometric system that may compete
with expert geometers in terms of capability, productivity, and intelligence. We
are highly motivated to work on the system and the problems involved.
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Abstract. In this paper, we propose a symbolic-numerical algorithm for
collision-free placement and motion of an object avoiding collisions with
obstacles. The algorithm is based on the combination of configuration
space and energy approaches. According to the configuration space ap-
proach, the position and orientation of the geometric object to be moved
or placed is represented as an individual point in a configuration space,
in which each coordinate represents a degree of freedom in the position
or orientation of this object. The configurations which, due to the pres-
ence of obstacles, are forbidden to the object, can be characterized as
regions in this configuration space called configuration space obstacles.
As will be demonstrated, configuration space obstacles can be computed
symbolically using quantifier elimination over the reals and represented
by polynomial inequalities. We propose to use the functional represen-
tation of semi-algebraic point sets defined by such inequalities, so-called
R-functions, to describe nonlinear geometric objects in the configuration
space. The potential field defined by R-functions can be used to “move”
objects in such a way as to avoid collisions. Introducing the additional
function, which forces the object towards the goal position, we reduce
the problem of finding collision free path to a solution of the Newton’s
equations, which describes the motion of a body in the field produced
by the superposition of “attractive” and “repulsive” forces. These equa-
tions can be solved iteratively in a computationally efficient manner.
Furthermore, we investigate the differential properties of R-functions in
order to construct a suitable superposition of attractive and repulsive
potentials.

1 Introduction

Many practical geometric problems for industrial applications deal with placing
and moving an object without colliding with nearby objects. The intricate nature
of such problems manifests itself in enhanced computational complexity, whereas
in industrial applications these problems must often be solved in real time. In
the present paper, we consider two main types of spatial planning problems in
a common framework:
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Fig. 1. Configuration space approach - enlarging obstacles: a problem of motion plan-
ning is reduced to finding a curve in the configuration space

– FindSpace: optimal placement of geometric objects, for example, maximiz-
ing the number of objects of similar shape that can be cut out from a piece
of material, minimizing the quantity of material needed to produce certain
shapes, various packing problems, etc. (see, for example, [5]);

– FindPath: finding a collision-free motion path of an object amidst some
obstacles of a particular shape, for example, an automatic assembly using
an industrial robot, which requires grasping objects, moving them without
collisions, and ultimately bringing them together.

The position and orientation of the geometric object to be moved or placed
in the real space may be manifested as an individual point in a configuration
space, in which each coordinate represents a degree of freedom in the position
or orientation of this object ([8]). The configurations which, due to the pres-
ence of obstacles, are forbidden to the object can be characterized as regions
in the configuration space called configuration space obstacles (see Fig. 1). The
algorithm which solves the translational and rotational collision-free motion or
safe placement problem when the objects are polygons or polyhedra was first
presented in [8]. This algorithm computes configuration space obstacles using
the notion of the Minkowski sum. After the configuration space obstacles have
been calculated, the problem of motion planning is reduced to finding a path in
the so-called visibility graph. In the presence of rotational motion, the induced
configuration space obstacles may be represented as nonlinear constraints, which
can be approximated by linear constraints. As noted in [9], the fundamental dif-
ficulty is that an exponential number of linear constraints would be required to
approximate even a quadratic surface within an accuracy of 2−n, resulting in an
exponential time algorithm.

The exact computation of configuration space obstacles can be done with the
aid of real quantifier elimination methods, as will be discussed in Section 2. The
configuration space obstacles are semi-algebraic sets and the task of collision-free
motion planning is then reduced to the problem of constructing a semi-algebraic
curve between two points, such that the intersection of this curve with the in-
terior of semi-algebraic set is empty. This purely geometric problem has been
solved in [14] using Cylindrical Algebraic Decomposition ([4]) of semi-algebraic
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sets. The latter algorithm can be performed in time polynomial in the number of
polynomials as well as their maximal degree and double exponential in the num-
ber of variables. More efficient algorithms for the path calculation are presented
in [1], [2] and have single exponential bounds in the number of variables. One of
disadvantages of the mentioned algorithms is that they follow the boundary of
configuration space and may produce paths, which touch obstacles. To calculate
paths with maximal clearance from obstacles several methods based on Voronoi
diagrams have been proposed (see [2], [15]).

In contrast to all these approaches, the objective of the present work is the
generalization of finding a geometric path in order to

– find paths, which guarantee a certain minimum clearance from obstacles,
– provide the possibility to incorporate nonholonomic motion constraints (ve-

locities, acceleration, etc.).

For this purpose, we shall describe a family of analytic functions with the
property to rise in the vicinity of obstacles of arbitrary shape in the direction
towards them. Using such “obstacle functions” (sometimes called “distance func-
tion”), we shall show how a “goal function” (sometimes called “target function”)
can be constructed, which decreases monotonously along some path from the ini-
tial to the final position, if and only if the path does not intersect any obstacle.
Combining obstacle and goal function, we shall obtain a scalar-valued “naviga-
tion function” such that the problem of motion planning can be reduced to the
task of following the gradient of the navigation function.

To our knowledge, the idea of using scalar valued functions for the obstacle
avoidance was pioneered in [6]. The author proposed the navigation functions for
the case the obstacles are a parallelepiped, a finite cylinder, and a cone. However,
these geometric primitives do not form a sufficient set to describe the images of
obstacles in the configuration space. The first construction of a general analytic
navigation function is due to [11]. The authors show how a smooth navigation
function can be constructed for the case when obstacles are smooth manifolds. In
the present paper, we describe the construction of a more general family of nav-
igation functions for arbitrary semi-algebraic objects. For this purpose, we shall
use the functional representation of semi-algebraic point sets defined by so-called
R-functions ([12], [16]) and reduce the problem of path finding to the solution of
the Newton’s equations of motion in a field of forces that can be done numerically.
The obstacle and goal functions play the role of repulsive and attractive forces that
push the object away from obstacles and pull it towards the goal position. As will
be shown, the R-functions exhibit a wide range of differential properties, which can
be used for the purpose of nonholonomic motion control. The implementation of
our approach and computational examples will be presented.

2 Description of Geometric Objects Using R-Functions

The theory of R-functions ([12],[16]) provides the methodology of constructing
an implicit functional representation for any semi-algebraic set using logical (set-
theoretical) operations. In this section we shall briefly introduce this concept and
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some results from the theory of R-functions, which shall be used in Section 3 for
the purpose of the collision-free motion planning.

Let F (X1, ..., Xn) be a Boolean function with truth value 1 and false value
0 built using logical operations ∧, ∨ and ¬. A real valued function f(x1, ..., xn)
is called an R-function if its sign is completely determined by the signs of its
arguments. More precisely, f is an R-function if there exists a Boolean function
F such that

sign(f(x1, ..., xn)) = F (sign(X1), ..., sign(Xn)). (1)

In other words, f works as a Boolean switching function, changing its sign
only when its arguments change their signs. For example, logical operations
on Boolean variables X1, X2 may be performed on real-valued variables x1, x2
such that (1) is satisfied using the following rules:

x1 ∧ x2 ≡ x1 + x2 −
√

x2
1 + x2

2
x1 ∨ x2 ≡ x1 + x2 +

√
x2

1 + x2
2

¬x1 ≡ −x1.

(2)

Consider, e.g., the Boolean function defined by

F (X1, X2, X3, X4) = X1 ∧ X2 ∧ X3 ∧ X4 ∧ X5.

The corresponding real valued function f may be defined recursively according
to (2):

f1(x1, x2) = x1 + x2 −
√

x2
1 + x2

2
f2(x3, x4) = x3 + x4 −

√
x2

3 + x2
4

f(x1, x2, x3, x4, x5) = f1 + f2−√
f1

2 + f2
2 + x5 −

√(
f1 + f2 −

√
f1

2 + f2
2
)2

+ x5
2

(3)

This R-function can be used to describe point sets bounded by four arbitrary
polynomials:

R(x, y) = {(x, y)|φ1(x, y) ≥ 0 ∧ φ2(x, y) ≥ 0 ∧
φ3(x, y) ≥ 0 ∧ φ4(x, y) ≥ 0 ∧ φ5(x, y) ≥ 0} (4)

For example, let four lines in the plane be given by the roots of the polynomials
φi, i = 1...4,

φ1(x, y) = x
φ2(x, y) = x − 4
φ3(x, y) = y
φ4(x, y) = y − 4

and a circle be given by

φ5(x, y) = (x − 2)2 + (y − 2)2 − 1.
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Fig. 2. O(x,y) and its roots

The object shown in Fig. 2 can be described as semi-algebraic set (4) or, al-
ternatively, with the help of analytic function f(φ1, φ2, φ3, φ4, φ5), that is equal
to zero on the boundary of the object, positive inside and negative outside the
object. In this way, any complicated semi-algebraic object can be constructed
from primitive algebraic objects. Thus, R-functions enable one to write easily an
equation for an object of arbitrary shape in the same way as one forms geometric
objects by logical or set theoretic operations ([10]). Therefore R-functions are
helpful in describing complicated semi-algebraic objects as an analytic function
having the following sign property

f(x) > 0 if x is inside the object
f(x) = 0 if x is on the boundary of the object
f(x) < 0 if x is outside the object

Alternatively to (2), the following rules described in [12] can be used to form
union and intersection of geometric objects:

Rα :
1

1 + α
(x1 + x2 ±

√
x2

1 + x2
2 − 2αx1x2),

where α(x1, x2) is an arbitrary symmetric function such that −1 < α(x1, x2) < 1.

Rm
0 : (x1 + x2 ±

√
x2

1 + x2
2)(x

2
1 + x2

2)
m
2 ,

where m is any even positive integer.

Rp : x1 + x2 ± (xp
1 + xp

2)
( 1

p ),

for any even positive integer p.
In each case above, choosing the +/− sign determines the type of an R-

function: (+) corresponds to R-disjunction and (−) sign gives the R-conjunction.
The given families of R-functions exhibit a wide range of differential properties,
which are studied in [17]. The change of parameters α, m and p leads to different
characteristics of the navigation function, which will be described in Section 4
and allows to control the velocity or acceleration of the object.
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The following theorem about the derivative of Rα-functions at the boundary
has been proven in [12]. It states that the absolute value of the derivative of an
R-function at the boundary point p in the given vector direction is equal to the
absolute value of the derivative of the polynomial φi, which describes this part
of boundary, provided the boundary part φi does not intersect with any other
boundary boundary part φj in p. The sign of the derivative is determined by
the number of logical negations of xi, called inversion degree.

Theorem 1 (Rvachev [12], [16]). Let f(x1, ..., xN ) be such Rα-function that
argument xi appears in f only once and has the inversion degree m. Suppose
the functions φ1, ..., φN and f are continuously differentiable and satisfy the
following condition at point p:

φi(p) = 0; φj(p) 	= 0, i 	= j;

f(φ1, ..., φN )|p = 0.

Then, for any vector direction l, the following equality holds

∂f(φ1, ..., φN )
∂l

∣∣∣∣
p

= (−1)m(
∂φi

∂l
)
∣∣∣∣
p.

For example, for any point p on the boundary part φi, i = 1...5, shown in Fig. 2,
the following condition is satisfied

∂f(φ1, ..., φ5)
∂l

∣∣∣∣
p

= (
∂φi

∂l
)
∣∣∣∣
p.

This condition allows one to use the gradient of R-functions to predict the pres-
ence of obstacles and avoid collisions, as will be described in Section 4.

3 Computing Configuration Space Obstacles

As mentioned above, an important part in our approach to motion planning is a
configuration space method ([8]). We propose to use the following two solutions:

– exact computation of configuration space obstacles based on quantifier elim-
ination methods ([7]);

– approximation of configuration space obstacles by nonlinear constraints,
which can be calculated in a more efficient manner ([13]).

In the following paragraphs we shall briefly describe both approaches.

Exact computation of configuration space obstacles. This algorithmic problem
can be formulated as a decision problem for the first-order theory of real fields.
The real numbers constitute an ordered field, which is closed under addition
and multiplication. The formulas in the first-order theory of reals, defined by A.
Tarski in 1930 and called the Tarski formulas, are composed from equalities and
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Fig. 3. Calculation of configuration space obstacles by quantifier elimination

inequalities. Such formulas may be constructed by introducing logical connec-
tives (conjunction, disjunction and negation) and the universal and existential
quantifiers to the atomic formulas.

For example, let some geometric object representing obstacle O be bounded by
roots of finitely many polynomials Oi,j(x, y, z). The inequalities Oi,j(x, y, z) ≥ 0
and Oi,j(x, y, z) ≤ 0 can be used to describe the exterior and interior of the
object. Choosing the suitable sign of the polynomials we may use only “≥” to
describe any geometric object. The Tarski formula describing the set of points,
which belong to the object, can be written as follows:

O(x, y, z) ≡
∨
i

∧
j

Oi,j(x, y, z) ≥ 0

The object P to be moved is given by roots of polynomials Pi(x, y, z) and can
be described with a Tarski formula in the same way. A shift of the object by
x0, y0, z0 units can be written as:

P (x, y, z) ≡
∨
i

∧
j

Pi,j(x − x0, y − y0, z − z0) ≥ 0

As can be seen in Fig. 1 and 3, in the two-dimensional case the configuration
space obstacle corresponding to O can be calculated for a particular orientation
of P by contacting P with O and moving P along the boundary of O keep-
ing them in contact. The resulting geometric object is the configuration space
obstacle OConf

φ corresponding to the orientation φ of P .

The contact of O and P can be expressed in terms of common roots of bound-
ing polynomials. Thus, OConf

φ corresponds to such shifts x0, y0, z0 of P where
some of polynomials Pi and Oi have common roots. This can be formalized with
a Tarski sentence as follows:

{(x0, y0, z0)|∃x, y, z : P (x − x0, y − y0, z − z0) = 0 ∧ O(x, y, z) = 0}

Eliminating ∃-quantifiers with existing methods ([3]) produces the semi-algebraic
set that corresponds to OConf

φ . The latter quantity can also be described with
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the aid of R-functions, as explained in Section 2. In Section 4 we shall show how
such description can be used to predict collisions.

Approximate computation of configuration space obstacles. The configuration
space obstacles can be calculated using the notion of the Minkowski sum. An
algorithm for the approximation of the Minkowski sum with the help of R-
functions has been proposed in [13]. Suppose P and O are defined by R-functions
P (x1, ..., xd) ≥ 0 and O(x1, ..., xd) ≥ 0, respectively. The intersection of P shifted
by s1, ..., sd units and O can be written as

F (x1, ..., xd, s1, ..., sd) = P (x1 − s1, ..., xd − sd) ∧ O(x1, ..., xd)

As explained above, OConf
φ consists exactly of such shifts s1, ..., sd, which pro-

duce the contact between P and O. The contact of P and O means that their
intersection is not empty. In this case F ≥ 0, otherwise, if P does not touch O,
F < 0.

Thus, the projection of F (x1, ..., xd, s1, ..., sd) must be calculated: find such
s1, ..., sd so that there exist some x1, ..., xd with F (x1, ..., xd, s1, ..., sd) ≥ 0. As
shown in [13], this projection can be computed by solving the following maxi-
mization problem:

OConf
φ (s1, ..., sd) = max{F3(x1, ..., xd, s1, ..., sd)}.

The necessary condition for a point (x1, ..., x2d) where the maximum is attained:

∂F3

∂si
= 0, i = 1...d;

These equations can be solved numerically, for example, with the help of the
Newton’s method. In this manner, the configuration space obstacles can be rep-
resented as R-functions and used to predict collisions with obstacles.

4 Navigation in the Configuration Space

As mentioned above, the calculated configuration space obstacles can be rep-
resented with the help of R-functions. It follows from Theorem 1 that in the
vicinity of obstacles the R-function increases towards them (see Fig. 4). Such
“obstacle function” is therefore useful in order to predict collisions and de-
termine the direction of the motion in order to avoid obstacles.Apart from
the “obstacle function” O, we introduce the “goal function” G, which is de-
creasing monotonously along the path π that connects the initial position s =
(s1, ..., sN ) and the target position g = (g1, ..., gN ). The goal function is required
to have only one minimum value in g. As we shall describe below, the sum of
both functions defines the potential field U , which is used for motion planning
(see Fig. 5):

U(x1, ..., xN ) = O(x1, ..., xN ) + G(x1, ..., xN ). (5)

Different functions with only one minimum value in the goal position and differ-
ent differential properties can be used. In general, the following conditions must
be satisfied:
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Fig. 5. Addition of the obstacle and the goal functions

– G is decreasing monotonously along the shortest path π connecting s with
g, e.g. the sign of the derivatives should be constant:

sign

(
∂G(x1, ..., xN )

∂xi

∣∣∣∣
π

)
= const. (6)

– U is decreasing monotonously in all points p ∈ π, which lie not too close to
any obstacle (|O(p)| < ε). From (5), (6) and from the fact that sign( ∂O

∂xi
) 	=

const, it follows that the derivatives of G should be greater than those of O:

|O(p)| < ε ⇔
∣∣∣∣∣ ∂G(x1, ..., xN )

∂xi

∣∣∣∣
p

∣∣∣∣∣ >
∣∣∣∣∣ ∂O(x1, ..., xN )

∂xi

∣∣∣∣
p

∣∣∣∣∣ (7)

– U has a minimum value in some point p ∈ π in the vicinity of an obstacle
(|O(p)| ≥ ε) and increases towards the obstacle:

|O(p)| ≥ ε ⇔
∣∣∣∣∣ ∂G(x1, ..., xN )

∂xi

∣∣∣∣
p

∣∣∣∣∣ ≤
∣∣∣∣∣ ∂O(x1, ..., xN )

∂xi

∣∣∣∣
p

∣∣∣∣∣ (8)

The following functions, which have only one minimum value in the goal position
g, can be used as goal functions:



Spatial Planning and Geometric Optimization 165

G0(x1, ..., xN ) = α(ε)
√

|g1 − x1| + ... + |gN − xN |,

Gd(x1, ..., xN ) = α(ε)((g1 − x1)2d + ... + (gN − xN )2d)
1
2d ,

where d and α(ε) are the parameters to be chosen in order to satisfy the con-
ditions (6)-(8). Using this function, the potential field U can be constructed
according to (5). The collision-free path from the initial to the final position
corresponds to the direction of the gradient of U . In other words, we must sim-
ply follow the gradient of U . In this way, the purely geometric problem of path
calculation can be reduced to the physical problem formulated with the help of
the Newton’s equations, which describe the motion of an object in the field of
some forces F:

ma + λv = F,

where m is a mass of the object to be moved, a and v are acceleration and
velocity, respectively, and λ is a so-called dissipation coefficient. Large values of
λ correspond to the motion in a highly viscous environment. To describe the
motion we may write the following differential equation:

m
d2xi(t)

dt2
+ λ

dxi(t)
dt

= −∂U(x1, ..., xd)
∂xi

(9)

(for simplicity, we do not consider curvilinear coordinates here). The force due
to the environment “resistance” in our model is taken to be R = −λv. However,
other models, in particular those that account for the resistance increasing with
velocity, can also be formulated, e.g. R = −C|v|v or, in the component form,
Rj = −(Cgikẋiẋk)

1
2 ẋj . Here gik is a metric tensor and C is the drag coefficient,

which in general depends on the object’s geometry and on the Reynolds num-
ber. The first term in (9) corresponds to the inertial motion. In our primary
example, we assume this term to be small as compared to the dissipative term,
which impedes the object’s when the object approaches the obstacle. This is
justifiable when the inertia coefficient m is small compared to λτ0 where τ0 is
the characteristic time of object motion.

The equations

λ
dxi(t)

dt
= −∂U(x1, ..., xd)

∂xi
(10)

can be solved numerically, e.g. using the finite difference techniques. Numerical
methods of solution of the motion equations are mostly based on evaluating the
fist derivatives as

df(x)
dx

=
f(x + Δx) − x(x)

Δx
+ O(Δx).

Such discretization of (10) leads to

λxi(tj+1) = λxi(tj)−
Δt

Δxi
(U(x1, ..., xi+Δxi, ..., xn)−U(x1, ..., xi, ..., xn)). (11)

According to (11), the object position x(tj+1) at the time step tj+1 can be cal-
culated from the previous position xi at the time step tj and the approximation
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of the gradient of U at x(tj). Initial values xi(0) designate the initial positions
of an object. Solving the equations

xj+1 = λxj −
Δt

Δx
(U(xj + Δx, yj) − U(xj , yj))

yj+1 = λyj −
Δt

Δy
(U(xj , yj + Δy) − U(xj , yj)) (12)

leads to the motion shown in Fig. 6, 7. An example with three degrees of freedom
demonstrated in Fig. 8 can be produced by solving

xj+1 = λxj −
Δt

Δx
(U(xj + Δx, yj , φj) − U(xj , yj , φj))

yj+1 = λyj −
Δt

Δy
(U(xj , yj + Δy, φj) − U(xj , yj, φj))

φj+1 = λφj −
Δt

Δφ
(U(xj , yj , φj + Δφ) − U(xj , yj, φj)).
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Fig. 6. The potential field (left), its gradient field (in the middle) and the path (right)
calculated by following the gradient according to (12). Δt

Δx
= 0.1; number of time steps:

54; computational time (using Maple): 0.121 sec.
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Fig. 8. An example of calculated path with three degrees of freedom: x and y transla-
tions and rotation

5 Conclusion

Our approach to spatial planning and associated geometrical problems is based
on the object motion representation in a configuration space, which has a dimen-
sionality equal to the number of independent coordinates describing the object
position and orientation in the real space. The advantage of such a method is due
to the fact that in the configuration space an object’s motion corresponds to that
of a fictitious material point moving in a potential field combined with viscous
(dissipative) forces. This allows one to employ powerful numerical algorithms to
compute collision-free trajectories. The potential field configuration is defined
with the help of R-function techniques, which seems to be a convenient method
for the functional (analytical) representation of complex geometries. The poten-
tial force field defined by R-functions has an attractive and a repulsive parts
whose competition determines the goal function and the obstacle function, re-
spectively. As it is typical of such situations, certain extremal properties arise
defining the optimal path. The future work will be devoted to the extremal
properties of the obstacle and goal functions.

Possible applications of presented techniques, apart from robot motion plan-
ning, may include medical kinesiology, biomechanics of human motion, rendering
of human body positions, velocities and accelerations, joint simulations - all be-
ing modeled with the help of motion equations.
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nD Polyhedral Scene Reconstruction from Single
2D Line Drawing by Local Propagation�
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Abstract. In this paper, we study the problem of reconstructing the
polyhedral structures and geometric positions of a general nD polyhedral
scene from a single 2D line drawing. With the idea of local construction
and propagation, we propose several powerful techniques for structural
reconstruction (i.e. face identification) and geometric reconstruction (i.e.
realizability and parametrization). Our structural reconstruction algo-
rithm can handle 3D solids of over 10,000 faces efficiently, outperform-
ing any other existing method. Our geometric reconstruction algorithm
can lead to amazing simplification in symbolic manipulation of the geo-
metric data, and can be used to find linear construction sequences for
non-spherical polyhedra.

Keywords: Polyhedra, Structural Reconstruction, Geometric Recon-
struction, Grassmann-Cayley Algebra, Local Propagation.

1 Introduction

Representing and perceiving an nD object has been a very fascinating problem
in both science and art [18]. For n = 3, the simplest representation is a line
drawing which is the 2D projection of the wireframe of the object, like drafting
in geometric design and mathematical diagram. To perceive an nD object one
needs to rebuild the nD structure from its 2D projection.

How can the n dimensions be recovered from a representation in which almost
all dimensions are lost? To start with, let us analyze how a solid in 3D space is
perceived. No one can direct his eyesight to pierce through the solid. The only
perceived object is the boundary of the solid, which is a 2D closed manifold. It
is the closedness that allows us to fill the boundary with solid content to achieve
one more dimension. When we watch a line drawing of the wireframe of a solid,
which is essentially one dimensional, we extract each cycle of edges, either fill
it by a plane or by some other surface to improve its dimension by one. Then
we detect if any closed manifold is formed by the planes and surfaces, and if so,
gain one more dimension by filling the closed manifold with solid content. The

� Supported partially by NSFC Grant 10471143 and 973 Project 2004CB318001.

H. Hong and D. Wang (Eds.): ADG 2004, LNAI 3763, pp. 169–197, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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closedness of a manifold and a pattern to fill it are the two essential things in
our 3D perception from low dimensional data.

From the topological point of view, a closed manifold is a closed chain in
homology, and the boundary of a non-closed manifold is a boundary chain. While
all boundary chains are closed, the converse is not true. For any dimension r,
the quotient of the closed r-chains over the boundary r-chains is called the r-th
homology of the object. Determining the boundary chains from the closed ones
is equivalent to determining the homology.

The wireframe model of an nD object consists of (1) a set of edges connecting
a finite set of points, called vertices of the object, (2) a subset of closed r-chains
for 0 < r < n, called boundary r-chains, which are the boundaries of the (r+1)D
pieces of the object, (3) a set of filling patterns, each for a boundary r-chain.

Example 1. Line drawings of a tetrahedron and a torus (also a 3D sphere).
Figure 1(a) shows a triangle being decomposed into three smaller ones. When
all the four triangles are interpreted as polyhedral faces in 3D, the four faces
form the boundary of a tetrahedron.

Figure 1(b) has 6 triangular cycles and 9 square cycles of edges. If all the
15 cycles are interpreted as polyhedral faces, then the 2D faces form 6 cycles of
faces which are the boundaries of 6 triangular columns. If the 6 cycles of faces
are interpreted as triangular columns then they form a cycle of 3D faces, which
is the boundary of a 4D ball, i.e., the cycle of 3D faces forms a 3D sphere. If
the object is required to be a 2D manifold, then the line drawing has a unique
interpretation: it represents a torus in which the 6 triangular cycles are holes
instead of boundaries of filled faces.

A

B C

D

(a)

F3"

F3

F2"

F2
F1"

F1’

F3’

F2’

F1

V1

V2

V3

V2"

V3"

V1’

V2’

V3’

V1"

(b)

Fig. 1. (a): a tetrahedron; (b): a torus in 3D space (also a 3D sphere in 4D space)

For several decades, the study of wireframe representation and reconstruction
has been focused on the real-world case n = 3. The reconstruction consists
of two steps: structural reconstruction (i.e., face identification) and geometric
reconstruction (i.e., realizability and parametrization). Structural reconstruction
is to find those closed cycles which are boundaries of faces of a prescribed filling
pattern. Geometric reconstruction is to determine whether a 2D line drawing of
an nD scene is realizable in the space, and if so, give a parametrization of the
space of all possible realizations.
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The reconstruction can be based on either one or several projections of the
same object. The projection can be either perspective or parallel. The filling
patterns can be either transparent or opaque, either curved or polyhedral. In
this paper, we focus on reconstructing an nD polyhedral wireframe in an mD
(m ≥ n) affine space from a single 2D line drawing, by assuming that the fillings
be completely transparent, so that all the edges and vertices are visible, and that
no two vertices are projected onto the same spot.

The structural reconstruction of an 3D object has been an active research
topic in computer-aided design [1], [6], computer graphics [3], [7], [27] and com-
puter vision [9], [17], but the case is completely open for n > 3. In the literature,
all algorithms for 3D reconstruction consist of two steps: searching for all the
cycles in the wireframe which are face candidates, and then identifying faces
from the candidates. In searching for cycles, all the algorithms are global in that
the searching is within the whole wireframe. A consequence is that the num-
ber of face candidates found is usually much larger than the number of real
faces. Since identifying faces from the candidates is an NP-complete problem,
the fastest algorithm in the literature can only handle wireframes of about 30
faces [15].

In the first part of this paper, we extend the study of polyhedral structural
reconstruction from 3D to nD, under the most general assumption that neither
the dimension n of the object nor the dimension m of its surrounding space is
given, and whether or not the object is a manifold is unknown. This study is
at least valuable in scientific visualization and high dimensional animation in
entertainment industry: scientists and artists may be very much excited to find
that their conceptual and spiritual nD object can be readily embodied in and
perceivable from a single 2D line drawing.

We then propose and implement a very efficient structural reconstruction
algorithm, which is valid for any n and m, no matter if they are known or not. In
the classical case m = n = 3, our algorithm outperforms all other algorithms for
face identification in both speed and range of application. For all the examples
in [14], [15], [21], our algorithm can generate all the solutions for ambiguous
wireframes, and do not produce or produce much fewer redundant cycles which
are not real faces. Surprisingly, our algorithm can handle complicated 3D objects
of over 10,000 faces [13].

There are several key ideas in our algorithm:

(1) For a general object in an unknown environment, although any compatible
face identification is a solution to the reconstruction problem, the goal should be
to find the most plausible solution that would be identified by a human observer.
A human tends to choose a face identification in which there are as many edges
as possible participating in as many faces as possible, which is the guideline for
the algorithms in [14] and [21]. For nD face identification, the most important
goal should be to find the highest dimension n, and for this purpose the above
guideline may not prove to be helpful. In this paper, we propose a new guideline
catering to this goal.
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(2) To improve the speed for finding the first acceptable solution, it is very
important to arrange the face candidates in such an order that the most plausible
ones come first. We classify the cycles according to their rigidity so that they
have different levels of priority in face identification.

(3) Initially to speed up the finding of the highest dimension, we propose to
search for the cycles locally in the wireframe, then propagate the local wireframe
to construct more cycles. This localization technique proves to be very efficient
also in reducing the number of redundant cycles.

(4) While all other methods do not allow neighboring faces to be coplanar, in
this paper we do. To further control the number of face candidates, we propose
two techniques, deletion and blocking, to reduce the scope of cycle searching by
deleting or blocking the branches that do not produce any new face candidates.

Once the polyhedral structure (also called incidence structure) of an nD poly-
hedral scene is determined, the next task is to determine the geometric positions
of the faces in the mD surrounding space. This is the problem of geometric re-
construction. It is generally assumed that m = n and that the nD scene is an
(n − 1)D manifold, or equivalently, an nD manifold with boundary. In this pa-
per, we focus on the geometric reconstruction from a single 2D line drawing, by
assuming that the center (or direction) of the perspective (or parallel) projection
from nD to 2D is given, and that no 2D face of the polyhedron is projected into
an image line. The wireframe is realizable if there exists an (n − 1)D manifold
whose projection is the line drawing. The equalities that must be satisfied by
the 2D coordinates for the wireframe to be realizable are called the realizability
conditions. The geometric positions of the faces cannot be unique, but can be
parametrized by free parameters. Thus geometric reconstruction is also referred
to realizability and parametrization.

Example 2. Truncated pyramid.
This is a classical example of 3D geometric reconstruction [5]. In Figure 2 (left)
there are 2 triangular faces and 3 square ones. It represents a truncated pyramid
formed by the 5 faces. However, the truncated pyramid can be realized in 3D
if and only if the three image lines in Figure 2 (right) concur, otherwise it can
only lie in a spatial plane, i.e., is flat.

In the literature of structural reconstruction, all attention is focused on the
real-world case n = 3, and in most cases, on the realizability problem. Being a
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Fig. 2. 3D truncated pyramid and its 2D projection
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classical problem in both computer vision and combinatorial geometry, it has
been studied from both numerical computation and symbolic computation as-
pects. In a series of papers [23], [24], [25], Sugihara formulated the problem as a
set of equations called fundamental equations, and proved that the realizability is
equivalent to the existence of solutions for a linear programming problem. The
problem is much more difficult to solve if the geometric data are in symbolic
form, and has been an active research topic in combinatorial geometry for over
20 years [5], [22], [30], [31]. In [5], Crapo proposed to reformulate the problem
as a set of equations called syzygy equations, which is much smaller in number.
Still the equations are very difficult to solve symbolically.

In the second part of this paper, we extend the study of the geometric re-
construction of polyhedra from 3D to nD. We propose a simple and effective
method to solve simultaneously the realizability and parametrization problems
symbolically. The method can be used to find linear construction sequences for
the 3D geometric configurations of a class of polyhedra with nonzero genus, a
result that has never been obtained before [12].

There are three key ideas in our algorithm:

(5) Using Grassmann-Cayley algebra, we decompose the fundamental equa-
tions into two systems: the system of extensors and the system of heights. We
only need to solve the former system, for which we can employ the powerful
vectorial equation-solving technique [10].

(6) In solving the equations of extensors, we introduce new parameters locally,
propagate the local solutions to obtain more parametrized ones. Essentially this
is a procedure of transforming the system of extensors into a system of new
parameters.

(7) To simplify the system of new parameters, algebraic factorization is nec-
essary but very difficult. For n = 3, we propose an efficient method called calotte
factorization, to factor the system of new parameters geometrically.

This paper is arranged as follows. In Section 2 we analyze some properties
of a general nD wireframe object and its 2D line drawing, and lay down the
foundation of high-dimensional reconstruction. In Section 3 and 4 we propose
some powerful techniques for nD structural and geometric reconstructions.

2 nD Wireframe Object and 2D Line Drawing

We consider the wireframe models in which the filling patterns are affine flats.
This pattern has a strong constraint, called the rD face adjacency constraint
[21]: if two rD faces share two (r − 1)D faces which are in different (r − 1)D
affine planes, then the two rD faces must be in the same rD affine plane, i.e.,
are coplanar.

We assume that the 2D line drawing of an nD wireframe object is obtained
by a perspective or parallel projection from an mD affine space to the image
plane, such that all the edges and vertices are revealed, and if three vertices are
not collinear in the mD space, nor should their images. So in the line drawing,
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– if two edges are collinear, so are they in the mD scene;
– if two edges cross not at a vertex, they do not intersect in the mD scene.

2.1 nD Perspective and Parallel Projections

A perspective projection from mD to 2D is the composition of m − 2 successive
perspective projections whose projective centers are linearly independent vec-
tors, and at least one center is an affine point. A parallel projection from mD to
2D is the composition of m − 2 successive parallel projections whose projective
centers are linearly independent directions.

As is well known, both projective and affine geometries can be efficiently rep-
resented by Grassmann-Cayley algebra and bracket algebra [22] in a coordinate-
free manner. Below we give a brief introduction of this algebra.

Let Vm+1 be an (m + 1)D vector space representing the mD affine space.
The outer product is the unique associative, multilinear and anticommutative
product defined among the vectors of Vm+1. The outer product of r vectors is
called an r-extensor. Any linear combination of r-extensors is called an r-vector.
The Grassmann space G(Vm+1) generated by Vm+1 is the graded vector space
of r-vectors for r from 0 to n. The Grassmann-Cayley algebra of G(Vm+1) is
the Grassmann space together with two products among its elements: the outer
product, denoted by juxtaposition, and the meet product, denoted by “∧”, which
is the dual of the outer product.

The space of (m + 1)D-vectors is one dimensional. Let I be a basis of this
space, then the bracket of an (m + 1)-vector x with respect to I is its coordinate

[x] = x/I. (2.1)

Bracket algebra refers to the ring of brackets.
In Grassmann-Cayley algebra, an r-extensor represents the (r − 1)D projec-

tive space spanned by the r vectors. So in the mD projective space, a point is
represented by a nonzero vector, which is unique up to scale. The line passing
through points 1,2 is represented by bivector 12. The rD plane passing through
points C1, . . . ,Cr+1 is represented by the r-extensor C1C2 · · ·Cr+1. The inter-
section of an rD plane A and an sD plane B, if r + s > m + 1, is represented
by the meet A ∧ B. A perspective (or parallel) projection from mD to 2D is
represented by [11]

P �→ XP, for all P ∈ Rm+1 (2.2)

where X is the (m − 2)-extensor representing the center (or direction) of the
projection. The space {XP |P ∈ Rm+1} is a 3D vector space representing the
image plane. Any decomposition of X into the outer product of m − 2 vectors
induces a decomposition of the projection into m − 2 “classical” projections in
which the perspective center is a point or point at infinity.

2.2 Constraints for Structural Reconstruction

Structural reconstruction is to recover for r from 2 up to n the rD polyhedral
structure, i.e., incidence structure, i.e., boundary (r−1)-chains. Since it is seldom
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possible to judge if a single cycle should be a boundary chain, in general we need
to find a number of cycles which are face candidates, and then select from them
a subset satisfying the properties of real faces. Structural reconstruction is also
called face identification.

In a wireframe model, a 0D face is a vertex, a 0D cycle is the two vertices of
an edge, and a 1D face is an edge. For r > 0, an rD cycle is a set of rD faces
such that (1) if two faces intersect, the intersection belongs to their iD faces for
0 ≤ i < r, (2) any (r − 1)D face of one rD face is shared by exactly one other
rD face in the set. For r > 1, an rD face is an (r − 1)D cycle filled by the rD
affine flat surrounded by it.

Some geometric constraints must be satisfied for an (r− 1)D cycle to become
an rD face. In previous work on face identification, it is generally assumed that
any two neighboring faces are not coplanar. We feel that this is too strong a
constraint to include many interesting models, so we discard it.

If two rD faces share at least two (r−1)D faces which are in different (r−1)D
planes, then the two rD faces must be in the same rD affine plane, i.e., coplanar.
The union of a set of rD coplanar faces is called an rD polyface, and the faces
are said to be merged together. An advantage of this concept is that usually we
do not need to decompose a polyface into non-overlapping faces.

By a perspective projection, a 2D face is projected onto a 2D region of the
image plane whose boundaries or boundary do not intersect. The 2D non-self-
intersection constraint [9] says that if two edges intersect not at a vertex, then
they cannot be in the same 1D cycle.

If there are at least three vertices which are collinear in the mD space, then
the 2D projection of the line passing through the vertices is called a line in the
line drawing. The edges within a line are the real parts, and the virtual connec-
tions between real parts are the virtual parts. The 2D non-interior-intersection
constraint [15] says that if two 1D cycles intersect at only two vertices and the
line segment between the two vertices intersects both the enclosed regions of the
1D cycles in the image plane, then either the two cycles form a polyface, i.e., are
coplanar, or at most one can be assigned as a face. This is because if both cycles
are faces and are non-coplanar, then the virtual part between the two vertices
must be the projection of a real part of the line of intersection, contradicting the
assumption that all edges are visible by the projection.

In a 2D line drawing it is impossible to distinguish between the interior and the
exterior of an rD object for r > 2. So the 2D non-interior-intersection constraint
has no high dimensional generalization.

If an rD face F is not in an rD cycle C but its intersection with C is exactly
the boundary of F , then F is called a chord of C. A face with chord can always
be decomposed along its chord into two coplanar faces. On the other hand, if a
cycle with chord is not assigned as a face, then it can be decomposed into two
cycles by adding the chord into it, and by assigning both cycles to be faces they
do not need to be coplanar. To gain more degree of freedom in the reconstruc-
tion, an rD cycle with chord is not assigned as a face. This is the rD chordless
constraint.
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Let F be an sD face for s ≥ 0. Any rD face containing F is called an rD
F -face. When r > s, an rD F -cycle refers to a set of rD F -faces in which any
(r − 1)D F -face of one rD F -face is shared by exactly one other rD F -face, and
not all rD F -faces are in the same rD plane.

In many applications it is required that the nD polyhedral object be a man-
ifold with boundary, i.e., the boundary is an (n − 1)D manifold. The formal
definition is that at every point of the boundary the intersection of the bound-
ary with a sufficiently small mD disk centered at the point is homeomorphic to
an (n − 1)D disk. In general, the following constraint, called (n − 1)D manifold
constraint, suffices to guarantee that an (n− 1)D cycle C satisfying all previous
constraints in this subsection be an (n − 1)D manifold: at any vertex V of the
cycle, there is at most one (n − 1)D V-cycle in C. This constraint has never
occurred in the literature of face identification before.

2.3 mD Geometric Reconstruction

Let the perspective or parallel projection from mD to 2D be induced by the
center X = C3C4 · · ·Cm, where the C’s are vectors in the (m+1)D vector space
of homogeneous coordinates. Each C represents a point or direction (point at
infinity). The geometric reconstruction from 2D to mD can be realized step by
step from (r − 1)D to rD, for r from 3 to m. The lift from (r − 1)D to rD is the
reverse procedure of the projective from rD to (r − 1)D centered at Cr. In this
subsection we always assume that r ≥ 3.

Assume that the line drawing represents an mD manifold with boundary.
Further assume that both Cr and the (r − 1)D image plane Ir−1 are given and
are in generic positions in the rD affine space Ir. In fact,

Ir = Ir−1Cr = Ir−2Cr−1Cr = · · · = I2C3 · · ·Cr. (2.3)

The input of the lift from (r − 1)D to rD is (1) the (r − 1)D coordinates of the
image vertices, (2) the incidence structure between the (r − 2)D and (r − 1)D
faces. The output is (1) the realizability conditions of the rD faces satisfied by
the the 2D coordinates of the image vertices, (2) the parametrized solution space
of the vertices and (r − 1)D faces in Ir. Since the perspective center is generic,
the equality constraints on the (r− 1)D coordinates are reduced to equalities on
the 2D coordinates of the vertices.

Let Vr+1 be the homogeneous coordinate space of Ir. Let {C0,C1,C2} be
a basis of V3 such that C1,C2 are directions of the image plane I2. Then
{C0,C1, . . . ,Cr} is a basis of Vr+1. Let the homogeneous coordinates of a ver-
tex Vr in Ir be (h0, h1, . . . , hr), where hr is called the height of the vertex with
respect to Cr. Let the homogeneous coordinates of an (r − 1)D face F r−1 in Ir

be (a0, a1, . . . , ar−1,−1). Then vertex Vr is in face F r if and only if

r−1∑
i=0

aih
i = hr. (2.4)

When the vertices and (r − 1)D faces range over the whole (r − 1)D incidence
structure, we obtain a set of linear homogeneous equations in the a’s and hr’s,
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called Sugihara’s rD fundamental equations. Solving (2.4) for the realizability
conditions if the hi take symbolic values for 1 ≤ i < r, is a very difficult task.

For any basis {Ci | 1 ≤ i ≤ r + 1} of Vr+1, its dual basis in the Grassmann
space generated by Vr+1 is the r-extensors {C∗

j | 1 ≤ j ≤ r + 1} such that
[CiC∗

j ] = δij . In fact,

C∗
j = (−1)j−1C1C2 · · · Čj · · ·Cr+1, (2.5)

where Čj denotes that Cj does not occur in the product.
The (r − 1)-extensor

Br−1 =
r−1∑
i=0

aiC∗
i (2.6)

is called the inhomogeneous coordinates of face F r−1. Two faces are coplanar
if and only if their inhomogeneous coordinates are identical. Now (2.4) can be
written as an equality in the bracket algebra generated by Ir−1:

hr = [Vr−1Br−1], (2.7)

where Vr−1 =
r−1∑
i=0

hiCi is the projection of Vr in Ir−1.

For any (r + 1)-tuple of vertices Vr
1,V

r
2, . . . ,V

r
r+1 in face F r−1, their pro-

jections Vr−1
1 ,Vr−1

2 , . . . ,Vr−1
r+1 in the image plane Ir−1 satisfy the following

Grassmann-Plücker relation [22]:

r+1∑
i=1

(−1)i−1[Vr−1
i Br−1][Vr−1

1 Vr−1
2 · · · V̌r−1

i · · ·Vr−1
r+1] = 0. (2.8)

When F r−1 ranges over all (r − 1)D faces with more than r vertices, we obtain
a set of equations linear in the hr’s by substituting (2.7) into (2.8):

r+1∑
i=1

(−1)i−1hr
i [V

r−1
1 Vr−1

2 · · · V̌r−1
i · · ·Vr−1

r+1] = 0. (2.9)

They are called Crapo’s rD syzygy equations.
On one hand, the fundamental equations and the syzygy equations have the

same solutions for the hr’s. On the other hand, the number of syzygy equations is
much smaller than the number of fundamental equations. The syzygy equations
can also be derived by eliminating the B’s from the fundamental equations (2.7).

Notice that for r > 3, both systems have a lot of redundant equations. Since
an (r − 1)D face F r−1 is in an rD face F r if and only if there is an r-tuple of
vertices of F r−1 incident to F r but not incident to any (r − 2)D affine plane, in
the case that F r−1 has more than r vertices, the syzygy equations of its (r + 1)-
tuples of vertices are all equivalent to each other. To remove the redundancy, we
require the incidence structure between the (r − 2)D and (r − 1)D faces be in
the input of rD lift, instead of only the incidence structure between the vertices
and (r − 1)D faces.
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2.4 Rigidity

By the definition of a cycle, the supporting affine plane of an (r − 1)D cycle has
dimension at least r. By the geometric reconstruction from rD to (r +1)D, for a
given (r− 1)D cycle in the rD affine plane, if the dimension of the configuration
space of the lifted cycle (which is defined to be the maximal number of free
parameters in the parametrization) is k + r + 1, then the rigidity of the cycle is
defined to be −k, and the flexibility of the cycle is defined to be k. A cycle of
rigidity 0, or −1, or < −1 is said to be rigid, or elastic, or plastic respectively.

For example if r = 2, a 1D cycle of k + 3 vertices has rigidity −k, because
when lifting from 2D to 3D along the perspective center, the cycle has k +3 free
parameters which are exactly the heights of all the vertices. Thus rigid 1D cycles
are triangular and elastic 1D cycles are square ones.

The principle of rigidity in structural reconstruction states that (1) rigid cycles
are always identified as faces, (2) elastic cycles are more likely to be faces than
plastic ones. The explanation is as follows:

1. Rigid cycles are natural object delimiters in the wireframe, they are either
real or interior faces of the object. If they are assigned as faces, they never
force any two faces of different planes to be coplanar, i.e., they do not cause
any geometric incompatibility.

2. If the object is not assumed to be a manifold, then taking all rigid cycles as
real faces conforms to the principle of psychological selection to be introduced
in Section 3, that more faces can be produced which pass through more lower
dimensional ones and do not reduce the number of higher dimensional ones.

3. If the object is required to be a manifold, then taking all rigid cycles as real
faces induce a decomposition of the object into smaller ones of the same
dimension, and by the manifold assembly algorithm to be introduced in
Section 3, all interior faces can be removed.

4. Elastic cycles are next to rigid ones in simplicity. Experiments show that
they are the next most plausible face candidates.

On one hand, the rigidity of a general cycle can be determined only by geomet-
ric reconstruction. On the other hand, the rigidity is to be employed in structural
reconstruction, far before geometric reconstruction starts. This paradox can be
resolved as follows: The principle of rigidity serves only as a heuristic rule in
ordering the face candidates. It is not a prerequisite that all cycles be ordered
strictly by their rigidity in face identification. In practice we use the following
algorithm to search for a class of rD rigid cycles for r > 1, called rooted rigid
cycles:

Two non-coplanar rD faces sharing one (r−1)D face are called neighbors. For
every pair of rD neighbors, do the following:

(1) Initially let set C contains only the pair.
(2) Repeatedly put into C all the rD faces and polyfaces sharing with C

at least r + 1 vertices which are not in the same (r − 1)D plane.
(3) If C is an rD cycle then it is rigid.
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Example 3. For a 2D cycle, if at each vertex there are at most three edges, then
the cycle must be rooted rigid. Figure 1(a) and Figure 2 are such examples.

3 Structural Reconstruction

Even for the classical case m = n = 3, structural reconstruction is very difficult.
The number of cycles in a graph is generally exponential in the number of ver-
tices. Given that all the cycles which are potential faces are found, the number
of their combinations is exponential in the number of the cycles. So this is a
problem of double-exponential complexity even for m = n = 3.

The guideline in designing an efficient algorithm should not be to find a
polynomial-time algorithm for all optimal solutions. We propose that it should
be to reduce the time for finding the first optimal solution.

The what is an “optimal solution”? For different purposes there are differ-
ent criteria. We propose the following sequence of criteria according to their
precedence in our general-purpose algorithm:

1. The highest dimension n of the object should be found and reached.
2. The solution should be most likely identified by a human.

Our principle of psychological selection is that for r > 1, the rD face identi-
fication should make as many (r − 1)D faces as possible participating in as
many rD faces as possible, such that the sequence of numbers of non-coplanar
iD faces is maximal lexicographically for i from n down to r.

3. If the solution is required to be a manifold of a given dimension, then any
such solution is optimal.

4. If there are several optimal solutions, then as many of them as possible
should be found.

Below we propose six powerful techniques for structural reconstruction based
on the above guideline and criteria. Without loss of generality, we only describe
the classical case of finding 1D cycles for 2D face identification. By the following
correspondences, the techniques and concepts therein (except for Subsection 3.5)
can be readily generalized to rD cycle-finding for (r+1)D face identification, for
r > 1:

vertex (0D face) −→ (r − 1)D face,
edge (1D face) −→ rD face,

cycle (1D cycle) −→ rD cycle,
face (2D face) −→ (r + 1)D face.

3.1 Localization

It is well recognized that to search for the real faces one does not need to find
all cycles. We further recognized that to speed up the finding of the first optimal
solution ones can simply search for face candidates locally.

Let C be a wireframe model. A local wireframe model of C is a subset of
the vertices of C together with all the higher dimensional faces formed by the
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vertices. A localization filter, or localization, of C is a sequence of local wireframe
models S1 ⊂ S2 ⊂ . . . ⊂ Sk = C in which each successor introduces more vertices
than its predecessor. With the introduction of new vertices, all the edges among
them and the existing vertices are introduced.

Localization is often realized by propagation through edges. Starting from a
vertex called the origin, we localize the wireframe by considering only the sub-
graph of the origin and its neighboring vertices. Within the local wireframe we
identify the faces. Then we set the origin to be the current local wireframe, and
repeat the localization and identification procedure. By introducing new vertices
according to the closeness of their relations with the existing ones, the complexity
of cycle searching can be reduced. Below are some typical localizations.

The first is the descendent localization: (1) Start from a set C containing only
one vertex called the origin, put all the neighboring vertices of C into C. (2) Put
all the vertices collinear with at least two vertices of C into C. Repeat until C
no longer changes. (3) Put all the neighboring vertices of C into C. (4) Repeat
Steps 2 and 3 until all vertices are in C. Each repeat is a round of localization.

The second is the singleton localization: Steps 1, 2, 4 are the same with those
in descendent localization. Step 3 is as follows: (3) Put into C those vertices
called singletons, which are common neighbors of at least two vertices of C, and
if there is no singleton at all then put into C its neighboring vertices, called
twins. This localization makes much easier the generation of new cycles.

The third is the rigidity localization: Steps 1, 2, 4 are the same with those in
the neighbor localization. Step 3 is as follows: (3) Put into C those singletons
each forming a rigid or elastic cycle with some vertices in C, and if there is
no such vertex at all then use Step 3 of the singleton localization. Locally, rigid
cycles are constructed first, followed by elastic and plastic ones. This localization
proves to be the most efficient.

Example 4. In Figure 3(a) there is no collinearity constraint prescribed. The
three localizations are identical:

{1} ⊂ {1, 2, 3, 4} ⊂ {1, 2, 3, 4, 5, 6, 7, 8, 9, 0} ⊂ {1, 2, 3, 4, 5, 6, 7, 8, 9, 0, a, b, c},
which proceeds till all vertices are included.
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Fig. 3. Localization and deletion
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3.2 Deletion

Two techniques accompany each round of localization: deletion and path block-
ing. The purpose of deletion is to reduce the size of a local wireframe by cutting
off those edges and vertices which no longer contribute to face identification.

When n = 3, the idea of deleting edges in cycle searching can be found in [15].
There the object is a 2D manifold in which any edge occurs in exactly two faces,
so if two faces containing the edge have been found, the edge can be deleted.
At any time, those vertices through which there is only one edge can always be
deleted.

For a general object, the criterion for an edge to be deletable should be that the
deletion does not influence the final identification of 2D faces and polyfaces. By
our principle of psychological selection, an edge E in the procedure of localization
can be deleted if by assigning any new cycle through it as a face, (1) the number
of non-coplanar faces does not increase, (2) if any new vertex V is to be added
into the polyface containing the face, there is always a cycle of edges in the
polyface that passes through V but not E, i.e., deleting E does not prevent V
from joining the polyface via a cycle of edges.

Deletion Theorem. In cycle searching, any saturated edge outside lines, and
any saturated real part of a line, can be deleted.

We shall explain the term “saturated” but omit the proof of the theorem. An
edge is said to be saturated if all the edges protruding from its vertices are already
in faces passing through the edge. A connected real part of a line is said to be
saturated if every edge of it is saturated.

In Figure 3(a), if three cycles 125a04, 138c94 and 126b73 are already assigned
as faces, then edges 12, 13, 14 are saturated and can be deleted. Then vertex 1
is no longer connected to any other vertex and can be deleted. See Figure 3(b).

3.3 Path Blocking

In Figure 3(b), the vertices in the localization form a big cycle 25a049c837b6.
This cycle cannot be a face, otherwise all three constructed faces have to be
merged. In searching for more face candidates passing through a fixed vertex,
those faces having been identified can block off some search branches by pre-
venting identified faces from merging, according to our principle of psychological
selection. This technique is extremely useful in reducing the number of branches
in cycle searching.

For a general object, if a branch of edges intersects a face in at least three
vertices which are not collinear, then the branch is blocked by the face. The
block is called a face block. If a branch meets two different face blocks, then it
is blocked permanently. If along a branch there is only one face block, then the
branch of edges can be merged with the face to form a polyface.

In Figure 3(b), suppose we want to find a new cycle passing through vertex 2.
From 2 to 6, the path is blocked by face 62137b. From 2 to 5, the path is blocked
by face 04125a. The two different face blocks permanently block any new cycle
from passing through branch 625.
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In [15], the models are 2D manifolds in which no two neighboring faces are
coplanar. If a cycle is identified as a face then no other branch passing through
two edges of it can generate a face. Here one face suffices to block off the branch
permanently. For a general object, this blocking does not work.

There are other types of blocks. The 2D non-self-intersection constraint can
block some branches permanently. These blocks are called intersection blocks.
The 2D non-interior-intersection constraint can block some branches from in-
cluding the interior of an existing face. These blocks are called interior blocks.
The 2D chordless constraint can permanently block some branches from gener-
ating cycles with chords. These blocks are called chord blocks.

3.4 Local Optimization

Assume that all the constructed cycles satisfy the constraints in Subsection 2.2.
For a group of cycles, if when assigning all of them to be new faces, either two of
them merge, or one face merges with an existing face, then the group of cycles
is said to be degenerate. For a degenerate group of cycles, by the principle of
psychological selection, generally not all the cycles are assigned as faces.

An optimal selection of a subset of cycles within the group should maxi-
mize the number of non-coplanar faces, or equivalently, minimize the number of
merges. If there are several optimal selections, then the algorithm bifurcates and
the state-space tree [15] is generated, or extended if it has been generated. Each
optimal selection is to be explored to find all solutions.

In rigidity localization, the above local optimization can be greatly simplified.
Recall that in each round of localization, there are two kinds of new vertices:
singletons and twins. In face identification, elastic cycles have priority over plastic
cycles, and singletons have priority over twins. Thus, there are four levels of
priority for non-rigid cycles. Our strategy is to restrict the local optimization to
cycles of the same level of priority. The details can be read from the following
example.

Example 5. A diagonal is drawn in a cube (Figure 4), which makes the face iden-
tification very difficult to reach dimension three [21]. By the local optimization
within rigidity localization, the unique 3D explanation can be easily obtained.

6 4

3 1

7 5
2

8

Fig. 4. Local optimization
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The following new vertex series is produced by rigidity localization:

1 −→ 2, 3, 4, 5 −→ 6, 7, 8. (3.1)

Only in the last step do the cycles appear. The singletons generated by elastic
cycles are

6 : {1264, 1364}; 7 : {1275, 1273, 1375}; 8 : {1284, 1485}. (3.2)

The other elastic cycles are 2637, 2648, 2758. For each singleton, its generating
elastic cycles are degenerate. The 3 groups of cycles form 12 combinations, among
which only the combination (6 : 1364, 7 : 1375, 8 : 1485) is optimal. No state-
space tree is generated.

3.5 Repair and Assembly

Example 6. In Figure 5, there is a line 1563 with virtual part 56. In the lit-
erature, usually two solutions are found, one with faces 123675 and 415863,
the other with faces 123685 and 415763. The latter is geometrically impossible,
because the 2D non-interior-intersection constraint is violated.
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Fig. 5. Repair and assembly

We introduce a simple technique called repair and assembly, to avoid pro-
ducing the fake solution. It is also very helpful in simplifying cycle searching,
although it only applies to 2D face identification. The technique is composed of
three steps:

(1) If there is any virtual part of a line, repair the line drawing by connecting
the virtual part. The new edges are said to be virtual.

(2) Make 2D face identification in the repaired line drawing. In Figure 5, two
tetrahedra are obtained.

(3) The second assembly principle states that if two 3D faces intersect at an
edge E but not at any face, then they can be assembled at the edge if and only
if within the line drawing, a face F1 at E in one 3D face is within the 2D region
of a face F2 at E in the other 3D face. If there are no two such faces then one 3D
face must be deleted; else the assembling is realized by replacing the two faces
by their difference in the polyface generated by them.

Assemble the faces containing the virtual edges according to this principle.
(4) Remove the virtual edges to recover the original wireframe.
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3.6 Manifold Assembly

In many applications it is required that the object be a 2D manifold. For this spe-
cial purpose, there are two alternatives to revise our general-purposed structural
reconstruction algorithm:

Anterior Approach: Employ the apriori constraints of a 2D manifold in the
general algorithm from the start, by revising the deletion, path blocking and
local optimization techniques, similar to the algorithm in [15].

Posterior Approach: Neglect the given information and use the general algo-
rithm to produce a set of 3D faces which are themselves 2D manifolds. As-
semble the 3D faces into a single 2D manifold. This approach, called manifold
assembly, appears to be more efficient than the previous one.

Example 7. Figure 6(a) shows a torus in 3D space. Without the requirement
that the output be a 2D manifold, it will be shown in the next subsection that
our structural reconstruction algorithm produces a 4D-face explanation in which
the boundary is composed of 6 triangular columns (3D faces), with side faces
F1F1′F1′′ , F2F2′F2′′ , F3F3′F3′′ , F1F2F3, F1′F2′F3′ , F1′′F2′′F3′′ respectively. De-
note the columns by their side faces. We need to assemble them to obtain the
torus. Below we use this example to explain our manifold assembly technique.
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Fig. 6. 2D manifold assembly

The input is a set of 3D faces whose boundaries are 2D manifolds, denoted
by S. The output is a single 2D manifold. There are several steps:

(1) Compute the pairwise intersections of the 3D faces. Divide S into different
connected components. In each component C, count the degree of each edge in
the 2D intersections, with respect to the 2D faces in S.

For a set of rD faces, the degree of an (r − 1)D face with respect to the set is
the number of elements in the set passing through the (r − 1)D face.

In Figure 6(a), the intersection between any two columns is a face. The
columns form a single connected component. Each edge in the graph has de-
gree 3. If face F1′′ is deleted, then the degree of every edge of F1′′ is reduced
to 2.
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(2) Now the assembling starts formally. Choose a 3D face called the origin,
which has the maximal number of 3D neighbors in the component. Use O to
denote the origin, and remove it from C.

In Figure 6(a), any column has 5 neighbors. Choose any of them, say F1F1′F1′′ ,
as the origin.

(3) The first assembly principle states that if two 3D faces intersect at a face
whose edges are of degree greater than two, then the 3D faces can be assembled
at the face by removing it; if one edge has degree two, then one 3D face must
be deleted.

Use this principle repeatedly, update C and O accordingly, and move the
assembled result from C to O, until no 3D face in C has 2D intersection with O.

In Figure 6(a), we can assemble columns F1F1′F1′′ and F1′′F2′′F3′′ , and denote
the result by O. Then face F1′′ is deleted, and its neighbors F1, F1′ , F2′′ , F3′′ each
have a degree-2 edge. The four neighbors disallow the other four columns to be
annexed to O. As a result, vertex V1′′ is absent from O. Although O itself is a 2D
manifold, it does not provide the whole line drawing with such an explanation.

On the other hand, if we assemble F1F1′F1′′ and F2F2′F2′′ , or start from
F1′′F2′′F3′′ and assemble it with F1′F2′F3′ , we can get the torus explanation in
two different manners.

(4) Use the second assembly principle repeatedly, update C and O accordingly,
and move the assembled result from C to O, until no 3D face in C has 1D
intersection with O.

If O is not a manifold and has an edge at whose endpoints V1,V2 the 2D
manifold constraints are violated, then O can be assembled at the edge if and
only if its V1-cycles of faces can be assembled at the edge by the second assembly
principle. If O cannot be assembled at the edge then the whole assembling exits,
else use the principle repeatedly until O no longer changes.

In Figure 5 (right), there are two tetrahedra sharing a common edge 56. The
pair of faces 12365 and 567 are merged into a polyface and then replaced by face
123675. The pair of faces 15634 and 568 are merged and then replaced by face
158634. However, edge 56 is NOT deleted, although it is no longer in any face.

(5) The third assembly principle states that if two 3D faces intersect at a
vertex V but not at any face or edge, then they can be assembled at the vertex
if and only if within the line drawing, a face F1 at V in one 3D face is within the
2D region of a face F2 at V in the other 3D face. If no such two faces then one
3D face must be deleted; else the assembling is realized by replacing the pair of
faces by their difference in the polyface generated by them.

Use this principle repeatedly, update C and O accordingly, and move the
assembled result from C to O, until C is empty.

If O is not a manifold, then if it has a vertex V where the 2D manifold
constraint is violated, then O can be assembled at V if and only if its V-cycles
of faces can be assembled at the vertex by the third assembly principle. If O
cannot be assembled at the vertex then the whole assembling exits, else use the
principle repeatedly until O no longer changes.
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In Figure 6(b) there are three 3D faces: two cubes and a tetrahedron. Vertex
3 is shared by the tetrahedron and a cube. Face 2376 can be merged with either
face 3ab or face 3ac, leading to two different manifold structures.

(6) The fourth assembly principle states that if two 3D faces do not intersect,
then they can be assembled at two 2D faces if and only if one 2D face is within
the 2D region of the other 2D face. To assemble the two 3D faces is to replace
the pair of faces by their difference in the polyface generated by them.

Now each set C has been replaced by the corresponding set O. Check if each
O is a manifold, and if not then the whole assembling exits. Use the fourth
assembly principle repeatedly among the O’s until the result is stable.

In Figure 6(b), the two cubes can be assembled at either the pair of faces
(1234, ABCD), or the pair (1584, ABCD), leading to two different manifolds.

(7) If no manifold is constructed or more solutions are needed, then changing
the order of 3D faces in the assembling sequence, including changing the origin,
may lead to different results.

Remark. (a) rD assembling differs from rD merging in that in merging we do
not delete anything, but in assembling we not only delete (r−1)D and rD faces,
but also generate new (r − 1)D and rD faces.

(b) If we employ the knowledge that Figure 6(a) represents a 3D manifold,
then before the assembling we can simply delete one of the six columns, because
its 3D content must be the algebraic union of the 3D contents of the other five.

3.7 The Main Algorithm

Input: (1) A 2D line drawing composed of vertices and edges. A vertex is rep-
resented by its 2D coordinates, an edge by two vertices.
(2) A set of lines. A line is represented by a sequence of collinear edges.
(3) A vertex as the origin of localization. The default is a vertex contained
in a maximal number of edges.

Output: Objects of dimension > 1: faces and polyfaces.
Initialization: (1) Find all pairs of edges intersecting not at a vertex. (2) Repair

lines with virtual parts.
Step 1. Localization start: Start from the origin, use rigidity localization to

generate a set of new vertices.
Step 2. Cycle searching: Generate faces by the depth-first cycle searching

strategy, together with the deletion, path blocking and local optimization
techniques.

Step 3. Dimension upgrading: Start from the 2D local wireframe constru-
cted so far, construct higher dimensional faces in a hierarchical order,
following a procedure similar to Steps 1 to 3.

Step 4. Assembling: This occurs if there is any repair in the local wireframe,
or the result is required to be a manifold. The assembling is also local.

Step 5. Localization end: Go back to Step 1 for another round of localiza-
tion. Terminate after all vertices are included.

Step 6. More solutions: Explore the state-space tree or change the origin to
get more solutions.
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Remark. Although a specific set of 2D coordinates are given in the input, they
are used only to test the inequalities occurring in the 2D non-self-intersection
constraint, the 2D non-interior-intersection constraint and the 3D assembly. A
solution based on these coordinates is acceptable as long as the polyhedral struc-
tures are compatible, no matter if the coordinates satisfy the realizability con-
ditions for the geometric reconstruction.

Example 8. In Figure 6(a), the 4D interpretation is obtained as follows:
From 1D to 2D: The sequence of new vertices in the localization is:

V1 (origin) −→ V2,V3,V1′ ,V1′′ −→ V2′ ,V2′′ ,V3′ ,V3′′ . (3.3)

In the first round, two rigid cycles are found:

G = V1V2V3, G1 = V1V1′V1′′ ,

no edge is deleted. In the second round, the 4 new vertices are singletons con-
structed by 4 elastic cycles:

V2′ : F3′′ = V1V2V1′V2′ , V2′′ : F3′ = V1V2V1′′V2′′ ,

V3′ : F2′′ = V1V3V1′V3′ , V3′′ : F2′ = V1V3V1′′V3′′ .

Then the 4 edges passing through V1 are deleted, so is V1 itself. The 4 new
vertices also generate 4 rigid cycles and 5 elastic cycles in which they are twins:

G2 = V2V2′V2′′ , G3 = V3V3′V3′′ , G′ = V1′V2′V3′ ,
G′′ = V1′′V2′′V3′′ , F1 = V2′V3′V2′′V3′′ , F2 = V1′V3′V1′′V3′′ ,
F3 = V1′V2′V1′′V2′′ , F1′ = V2V3V2′′V3′′ , F1′′ = V2V3V2′V3′ .

After this all edges are deleted, so no more cycles are constructed.
From 2D to 3D: It happens in every local wireframe of (3.3) but produces
results only in the last one. The sequence of new faces (and edges therein) in the
localization is

V1V2 (origin) −→ F3′ , F3′′ , G −→ F3, G1, G2, F1′ , F2′ , G′′, F1′′ , F2′′ , G′

−→ V3′V3′′ , F1, F2, G3.
(3.4)

The second local wireframe of (3.4) is generated by three rigid 2D cycles:

C3 = G1F3F3′F3′′G2, C′ = GF1′F2′F3′G′′, C′′ = GF1′′F2′′F3′′G′.

Then faces F3′ , F3′′ , G and hence edge V1V2 are deleted. The last local wireframe
of (3.4) is generated by three 2D rigid cycles which introduce edge V3′V3′′ :

C = G′F1F2F3G
′′, C1 = G2F1F1′F1′′G3, C2 = G1F2F2′F2′′G3.

After this all faces are deleted.
From 3D to 4D: Only in the last wireframe of (3.4) does it produce any result.
The localization is

G (origin) −→ C′, C′′ −→ C, C1, C2, C3. (3.5)
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The last wireframe is generated by the rigid cycle through C′, C′′. Thus the final
result is a 3D rigid cycle, or equivalently, a 4D face.

We have implemented all the algorithms in VC++ 6.0, have tested all the
examples in [1], [14], [15], [21], in addition to higher dimensional ones made by
ourselves. We We have made a comparison between our algorithm and the ex-
isting fastest algorithm for face identification of 2D manifolds in [15]. It appears
that our algorithm can handle complex manifold objects of over 10,000 faces
by an IBM PC of Intel 2.60GHz CPU and 248MB RAM within one and a half
hours, while their algorithm has to be stopped after running many more hours.

4 Geometric Reconstruction

The geometric reconstruction from (r − 1)D to rD can be formulated as solving
either Sugihara’s fundamental equations (2.7) for the unknowns h’s and B’s, or
Crapo’s syzygy equations (2.9) for the unknowns h’s. The problem is obviously
linear for numerical data.

If the 2D coordinates are symbolic, then they must satisfy some unknown
realizability conditions for the geometric reconstruction. After they are found,
the realizability conditions must be further triangulated [32] in order to obtain a
sequence of explicit geometric constructions for the 2D line drawing. From this
aspect, all 2D coordinates are unknowns and the equations are highly nonlin-
ear with a large number of unknowns. This explains the difficulty in symbolic
geometric reconstruction.

Without loss of generality, we set r = 3 in this section and focus on the 2D
to 3D lift. The syzygy equations are obtained by eliminating the B’s from the
fundamental equations. To further eliminate the h’s from the system, and then
triangulate the equations of the 2D coordinates, is usually very difficult.

How about eliminating the h’s from the fundamental equations, and then
further eliminating the B’s? The fundamental equations (2.7) can be trivially
split into two systems. The first system, called the B-system, or bivector system,
is that the height of any vertex Vi computed from any of its incident faces
F1, . . . , Fk are the same:

[iB1] = [iB2] = · · · = [iBk], for any 1 ≤ j ≤ k. (4.1)

Here i denotes the 2D coordinates of vertex Vi. The second system, called the
h-system, or height system, is that one face F1 is sufficient to characterize the
height of its vertex Vi:

hi = [iB1]. (4.2)

The B-system appears to be much easier to solve than the syzygy equations,
although it has more unknowns and equations.

The B-system is the starting point of our geometric reconstruction. We can
use the powerful vectorial equation-solving [10] method to solve it. The following
three formulas will used in this paper, whose proofs are easy and are omitted.



nD Polyhedral Scene Reconstruction from Single 2D Line Drawing 189

Type B.0. ⎧⎨
⎩

[V1B] = [V1B′]
[V2B] = [V2B′]
V1V2 	= 0

Solution: B = B′ + ω12V1V2 for new parameter ω12.
Type B.1. ⎧⎪⎪⎨

⎪⎪⎩
[V1B] = [V1B′]
[V2B] = [V2B′]
[V3B] = [V3B′]
[V1V2V3] 	= 0

(4.3)

Solution: B = B′.
Type B.2. ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[V1B] = [V1B′]
[V2B] = [V2B′]
... ...
[VkB] = [VkB′], where k > 3
[V1V2V3] 	= 0

(4.4)

Solution: An expression of B by V1,V2,V3 and k − 3 syzygy equations.⎧⎪⎨
⎪⎩

[V1V2V3]B = [V1B′]V2V3 − [V2B′]V1V3 + [V3B′]V1V2,

[V1B′][V2V3Vj ] − [V2B′][V1V3Vj ] + [V3B′][V1V2Vj ]
−[VjB′][V1V2V3] = 0, for 3 < j ≤ k.

To avoid bifurcation in vectorial equation-solving, some inequalities are neces-
sary. In this section, we adopt the following Practical Assumption:

In the line drawing, no three neighboring vertices of a face are collinear.

4.1 Parametric Propagation

To solve the B-system, using elimination methods usually leads to complicated
bifurcations, in which most branches are geometrically meaningless. We need a
method to control the bifurcation, by transforming the system into one with a
minimal number of unknowns and equations.

We propose a technique called parametric propagation to make the transfor-
mation. The idea is to solve the B-system locally by introducing suitable para-
meters, like the solving of type-B.0 equations. The propagation is similar to the
localization in structural reconstruction: First we choose a B as the “origin”,
and solve for other B’s neighboring to it when taken as faces, by introducing a
minimal number of new parameters. The solved B’s are then put into the origin,
and the propagation continues. In the end, the B-system is transformed into two
subsystems, one with the B’s explicitly expressed by the new parameters, the
other with the parameters only. The latter is called the system of parameters.
The details can be read from the following example.
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Example 9. The torus in Figure 6(a) is called the Sugihara torus [25]. Its B-
system is as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[1B2′ ] = [1B2′′ ] = [1B3′ ] = [1B3′′ ]
[2B1′ ] = [2B1′′ ] = [2B3′ ] = [2B3′′ ]
[3B2′ ] = [3B2′′ ] = [3B1′ ] = [3B1′′ ]

[1′B2] = [1′B2′′ ] = [1′B3] = [1′B3′′ ]
[2′B1] = [2′B1′′ ] = [2′B3] = [2′B3′′ ]
[3′B1] = [3′B1′′ ] = [3′B2] = [3′B2′′ ]

[1′′B2] = [1′′B2′ ] = [1′′B3] = [1′′B3′ ]
[2′′B1] = [2′′B1′ ] = [2′′B3] = [2′′B3′ ]
[3′′B1] = [3′′B1′ ] = [3′′B2] = [3′′B2′ ]

(4.5)

Parametric propagation:

Round 0: Choose face F3′′ as the origin. Algebraically this is equivalent to
setting B3′′ = 0.

Round 1: Propagate towards a neighbor of the origin, say F3. Algebraically
this is equivalent to solving a system of type B.0:

[1′B3] = 0, [2′B3] = 0 B.0−→ B3 = ω1′2′1′2′.

Round 2: Now only B3′ can be solved without introducing new parameters,
i.e., only F3′ can be constructed geometrically. Propagation towards F3′ .

[1B3′ ] = 0, [2B3′ ] = 0, [1′′B3′ ] = ω1′2′ [1′2′1′′], [2′′B3′ ] = ω1′2′ [1′2′2′′]
B.2−→ [121′′]B3′ = ω1′2′ [1′2′1′′]12, ω1′2′12 ∧ 1′2′ ∧ 1′′2′′ = 0.

A Cayley factorization [29] has been carried out in the solution.
Round 3: To construct any new face, at least one new parameter must be

introduced. Propagation towards F1′′ .

[2B1′′ ] = 0, [2′B1′′ ] = 0 B.0−→ B1′′ = ω22′22′.

Round 4: Propagation towards B2′′ , i.e., construct F2′′ in Figure 6(a).

[1B2′′ ] = 0, [1′B2′′ ] = 0, [3B2′′ ] = −ω22′ [232′], [3′B2′′ ] = ω22′ [22′3′]
B.2−→ [131′]B2′′ = ω22′ [232′]11′, ω22′11′ ∧ 22′ ∧ 33′ = 0.

Rounds 5-8: Propagations towards B1, B2, B1′ , B2′ . They are similar to
Round 4.
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Solution: By setting B3′′ = 0 and using new parameters ω1′2′ , ω22′ , the original
B-system is changed into⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B3′′ = 0,

B3 = ω1′2′1′2′,
[121′′]B3′ = ω1′2′ [1′2′1′′]12,

B1′′ = ω22′22′,
[131′]B2′′ = ω22′ [232′]11′,

[2′3′2′′]B1 = ω1′2′ [1′2′2′′]2′3′ − ω22′ [22′3′]2′2′′,
[1′3′1′′]B2 = ω1′2′ [1′2′1′′]1′3′ − ω22′ [22′3′]1′1′′,

[232′′]B1′ = ω1′2′ [1′2′2′′]23 + ω22′ [232′]22′′,
[131′′]B2′ = ω1′2′ [1′2′1′′]13 + ω22′ [232′]11′′,

(4.6)

together with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω22′11′ ∧ 22′ ∧ 33′ = 0,

ω1′2′12 ∧ 1′2′ ∧ 1′′2′′ = 0,

(ω1′2′ [1′2′3′] − ω22′ [22′3′])1′1′′ ∧ 2′2′′ ∧ 3′3′′ = 0,

(ω1′2′ [1′2′2′′] − ω22′ [22′2′′]) 23 ∧ 2′3′ ∧ 2′′3′′ = 0,

ω22′([11′′3′′][232′][2′3′2′′] + [131′′][22′3′][2′2′′3′′])

= ω1′2′([131′′][1′2′2′′][2′3′3′′] − [133′′][1′2′1′′][2′3′2′′]).

(4.7)

By parametric propagation, we have successfully reduced the 27 equations in
(4.5) to the 5 equations in (4.7), and reduced the 8 bivector unknowns to 2
scalar unknowns.

The next task is to solve for the ω’s from (4.7) so that the 2D faces given by
(4.6) constitute a 2D manifold in 3D.

4.2 Calotte Factorization

In (4.7), the first 4 equations are in factored form, so each can be decomposed
into two equations, one with the parameters and the other without. This is a
great simplification. Although the last equation in (4.7) itself cannot be factored,
it becomes so if the other 4 equations are used.

The algebraic factorization for the last equation is very delicate. Below we
propose a very simple technique called calotte factorization, to produce solutions
in factored form for equations of type B.2, using the local geometric information.
It is a geometric method for algebraic factorization. Although this technique
only applies to the reconstruction from 2D to 3D, it is general enough and very
effective in simplifying the system of parameters.

The idea is inspired by Crapo’s work [5], where it is suggested that for bracket
polynomials produced in geometric computation, the geometric background can
help finding rational Cayley factorization. Let F be a face of m vertices, called
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the center. A regular m-calotte centered at F [5] is defined as a 2D F -cycle.
The faces of the cycle are the circumfaces. Let 1, 2, . . . , m be the vertices of the
center, and let 11′, 22′, . . . , mm′ be the edges shared by neighboring circumfaces.
Then the calotte can be denoted by (12 . . .m, 1′2′ . . . m′). In a general calotte,
the center may not be a face.
Crapo’s Theorem. (cf. [5]) Let (12 . . .m, 1′2′ . . . m′) be a regular m-calotte,
let the inhomogeneous coordinates of the center and the circumfaces be B0 and
Bi for 1 ≤ i ≤ m. If the center and m − 1 circumfaces have been constructed,
then the last circumface can be constructed if and only if

(Bi−B0)c = 0, or equivalently, (Bi+1−Bi)c = 0 for some 1 ≤ i ≤ m, (4.8)

where
c = −[1′12][2′23] · · · [(m − 1)′(m − 1)m][m′m1]

+[2′12][3′23] · · · [m′(m − 1)m][1′m1]

is the Crapo binomial. The equation in (4.8) is called the calotte equation.
For a general 3-calotte, no matter if its center is a face or not, the calotte

equation is
(B2 − B1)11′ ∧ 22′ ∧ 33′ = 0. (4.9)

Calotte factorization is to replace the syzygy equation in the solution of type-
B.2 equations by a calotte equation, using Crapo’s Theorem in the procedure
of parametric propagation. If several calotte equations are available, then any of
them will do.

Example 10. In the parametric propagation of Example 9, the calottes are
produced along with the construction of new faces:

B3′′ −→ B3
−→ B3′ , calotte (11′1′′, 22′2′′)
−→ B1′′ ,B2′′ , calotte (123, 1′2′3′)
−→ B1,B2,B1′ ,B2′ , calottes

(1′2′3′, 1′′2′′3′′), (22′2′′, 33′3′′), (11′1′′, 33′3′′), (123, 1′′2′′3′′).

The equations of the first 4 calotte are exactly the first 4 equations in (4.7) when
applying (4.6). The last equation in (4.7) is a syzygy equation obtained by solving
for B2′ , i.e., constructing F2′ , in the last round of propagation. By Crapo’s
Theorem, this equation can be replaced by the calotte equation of (11′1′′, 33′3′′).
The result after applying (4.6) is

(ω1′2′ [131′][1′2′1′′]1′3′ − ω22′([131′][22′3′]1′1′′ + [1′3′1′′][232′]11′))
13 ∧ 1′3′ ∧ 1′′3′′ = 0.

(4.10)

4.3 Solving the System of Parameters

Now we are ready to solve the system of parameters. We illustrate this by solving
(4.7). Since the reconstruction result is a manifold, both ω1′2′ and ω22′ must be
nonzero.
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Lemma 1. If ω1′2′ , ω22′ are both nonzero, then at most one of the following three
equalities holds:

ω1′2′ [131′][1′2′1′′]1′3′ − ω22′([131′][22′3′]1′1′′ + [1′3′1′′][232′]11′) = 0 (4.11)
ω1′2′ [1′2′2′′] − ω22′ [22′2′′] = 0 (4.12)
ω1′2′ [1′2′3′] − ω22′ [22′3′] = 0 (4.13)

After deleting nonzero factors, the system of parameters is decomposed into
three subsystems:⎧⎪⎪⎨
⎪⎪⎩

11′ ∧ 22′ ∧ 33′ = 0
1′1′′ ∧ 2′2′′ ∧ 3′3′′ = 0
12 ∧ 1′2′ ∧ 1′′2′′ = 0
23 ∧ 2′3′ ∧ 2′′3′′ = 0

,

⎧⎪⎪⎨
⎪⎪⎩

11′ ∧ 22′ ∧ 33′ = 0
12 ∧ 1′2′ ∧ 1′′2′′ = 0
13 ∧ 1′3′ ∧ 1′′3′′ = 0
23 ∧ 2′3′ ∧ 2′′3′′ = 0

,

⎧⎪⎪⎨
⎪⎪⎩

11′ ∧ 22′ ∧ 33′ = 0
1′1′′ ∧ 2′2′′ ∧ 3′3′′ = 0
12 ∧ 1′2′ ∧ 1′′2′′ = 0
13 ∧ 1′3′ ∧ 1′′3′′ = 0

(4.14)
Lemma 2. If ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
12 ∧ 1′2′ ∧ 1′′2′′ = 0
23 ∧ 2′3′ ∧ 2′′3′′ = 0
11′ ∧ 22′ ∧ 33′ = 0

1′1′′ ∧ 2′2′′ ∧ 3′3′′ = 0

(4.15)

then 13 ∧ 1′3′ ∧ 1′′3′′ = 0, 11′′ ∧ 22′′ ∧ 33′′ = 0. If⎧⎪⎪⎪⎨
⎪⎪⎪⎩

12 ∧ 1′2′ ∧ 1′′2′′ = 0
13 ∧ 1′3′ ∧ 1′′3′′ = 0
23 ∧ 2′3′ ∧ 2′′3′′ = 0
11′′ ∧ 22′′ ∧ 33′′ = 0

(4.16)

then 11′∧22′∧33′ = 0, 1′1′′∧2′2′′∧3′3′′ = 0 under the condition [1′2′3′] 	= 0.
By this lemma, in the first and third subsystems of (4.14), the six tuples

(12,1′2′,1′′2′′), (13,1′3′,1′′3′′), (23,2′3′,2′′3′′),
(11′,22′,33′), (11′′,22′′,33′′), (1′1′′,2′2′′,3′3′′) (4.17)

are all concurrent lines. The corresponding configuration is called the Triple De-
sargues Configuration. By Desargues Theorem, the six intersections A,B,C,A′,
B′,C′ of the six tuples lie on two lines, with each line passing through three inter-
sections. In this configuration, both ω1′2′ , ω22′ are free of any equality constraint,
and according to (4.6), the line drawing can be lifted to a spatial torus.

For the second subsystem of (4.14), if it is not the Triple Desargues Configura-
tion, then [1′′2′′3′′] = 0 and ω1′2′ [1′2′3′] = ω22′ [22′3′]. By (4.6), B1 = B2 = B3,
the solution is not a manifold.

Theorem on Sugihara Torus. A line drawing of Sugihara torus with vertices
i, i′, i′′ for 1 ≤ i ≤ 9 is realizable in 3D if and only if it is a Triple Desargues
Configuration, i.e., if and only if the following are concurrent 3-tuples of image
lines:

(ij, i′j′, i′′j′′), (ii′, ii′′, i′i′′), for 1 ≤ i < j ≤ 3.
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Fig. 7. Triple Desargues configuration

The configuration space of all Sugihara tori allows global parametrization. Let
2,3,1′,2′,3′,1′′,2′′ be free points in the plane, let B3′′ be a free bivector in the
image plane and let ω1′2′ , ω22′ be free parameters, then the following is a global
parametrization.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 = 2(1′2′ ∧ 1′′2′′) ∧ 1′(22′ ∧ 33′)
3′′ = (23 ∧ 2′3′)2′′ ∧ (1′1′′ ∧ 2′2′′)3′

B3 = B3′′ + ω1′2′1′2′

B3′ = B3′′ + ω1′2′([1′2′1′′]/[121′′])12
B1′′ = B3′′ + ω22′22′

B2′′ = B3′′ + ω22′([232′]/[131′])11′

B1 = B3′′ + ω1′2′([1′2′2′′]/[2′3′2′′])2′3′ − ω22′([22′3′]/[2′3′2′′])2′2′′

B2 = B3′′ + ω1′2′([1′2′1′′]/[1′3′1′′])1′3′ − ω22′([22′3′]/[1′3′1′′])1′1′′

B1′ = B3′′ + ω1′2′([1′2′2′′]/[232′′])23 + ω22′([232′]/[232′′])22′′

B2′ = B3′′ + ω1′2′([1′2′1′′]/[131′′])13 + ω22′([232′]/[131′′])11′′

h1 = [1B3′′ ], h2 = [2B3′′ ], h3 = [3B1′′ ]
h1′ = [1′B3′′ ], h2′ = [2′B3′′ ], h3′ = [3′B1′′ ]
h1′′ = [1′′B3], h2′′ = [2′′B3], h3′′ = [3′′B1]

(4.18)

(4.18) is in fact a linear construction sequence of the torus, i.e., a triangular
form in which the polynomials are linear with respect to their leading variables.
Algebraically, all the properties of resolvable sequences [26] needed in application
are occupied by linear construction sequences.

Although a Sugihara torus is composed of three triangular columns as in
Figure 2, the condition that the three columns can be reconstructed into man-
ifolds does not guarantee that the torus can. What is more useful is the 4D
structure, or equivalently, the 3D manifold structure of Figure 6(a). There are 6
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triangular columns which form a cycle of 3D faces. In 3D one column is trivial
and can be removed. That the torus can be reconstructed in 3D is equivalent to
that the 5 columns can be respectively reconstructed in 3D, following Lemma
1 and 2. Further connection between high dimensional structural reconstruction
and geometric reconstruction is a topic of our future research.

4.4 Higher Dimensional Case

For geometric reconstruction from 2D to nD where n > 3, the number of non-
trivial incidence relations grows rapidly, and as a consequence, the system of
parameters is much more complicated. By trivial incidence relations we mean
those that can be deduced from lower dimensional ones.

A

B
C

A"

B"
C"

A’

B’ C’

a

b c

a"

b" c"

a’

b’ c’

1

2

3

1"

2"
3"

1’

2’ 3’

Fig. 8. 3D Sugihara torus

Example 11. Since T r =

r︷ ︸︸ ︷
S1 × S1 × · · · × S1, when representing S1 with a

triangular cycle, we obtain a wireframe of T r, called rD Sugihara torus.
For r = 3, there are 81 nontrivial 2D coplanarity constraints, and 3 non-

trivial 3D coplanarity constraints. In Figure 8, the 3D coplanarities are that
1231′2′3′1′′2′′3′′, abca′b′c′a′′b′′c′′ and ABCA′B′C′A′′B′′C′′ are respectively 3D.

In geometric reconstruction from 2D to 3D, 4 new parameters are introduced,
and are all free ones in manifold parametrization. From 3D to 4D, 2 new para-
meters are introduced, and are both free ones in manifold parametrization.

The parametric propagation and calotte factorization algorithms have been
implemented with Maple 8 and tested by more than 20 examples.

5 Conclusion

In this paper, we study the fascinating problem of nD polyhedral scene recon-
struction from a single 2D line drawing, from both structural and geometric
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aspects. We propose a number of very efficient techniques for the reconstruc-
tions, and test them by common examples for n = 3, showing the superiority of
our algorithms. We believe our algorithms are the first for n > 3, and have a lot
of room for further improvement despite their current efficiency.
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Abstract. In this paper, we introduce the concept of planar general-
ized Stewart platform (GSP) consisting of two rigid bodies connected
with three constraints between three pairs of geometric primitives in the
two rigid bodies respectively. This problem can be treated as a special
but important class of geometric constraint solving problems. We show
that there exist sixteen forms of planar GSPs. We also obtain the closed-
form solutions of the direct kinematics for the planar GSPs. For a class of
GSPs with two distance and one angular constraints, we may give pure
geometric solutions based on ruler and compass constructions.

Keywords: Planar generalized Stewart platform, geometric constraint
solving, direct kinematics, closed-form solution.

1 Introduction

The Stewart platform, originated from the mechanism designed by Stewart for
flight simulation [22] and the mechanism designed by Gough for tire test [10],
is a spatial parallel manipulator consisting of two rigid bodies: a moving plat-
form, or simply a platform, and a base. The position and orientation (pose)
of the base are fixed. The base and platform are connected with six extensible
legs. For a set of given lengths of the six legs, the pose of the platform could
generally be determined. The Stewart platform has been studied extensively in
the past twenty years and has many applications. Comparing to serial mecha-
nisms, the main advantage of the Stewart platform is its inherent stiffness and
high load/weight ratio. For more information on the platform, please consult
[2, 4, 13, 15, 18, 19]. A large portion of the work on Stewart platform is focused
on the direct kinematics[13, 15, 18, 19].

On the other hand, geometric constraint solving is the central topic in much
of the current work of developing intelligent CAD systems [5, 11, 12, 14, 20]. It
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also has applications in molecular modelling, linkage design, computer vision
and computer aided instruction. Geometric constraint solving algorithms accept
the declarative description of geometric diagrams or engineering drawings as the
input and output a drawing procedure. In [6, 7], as a special class of geomet-
ric constraint problems, we introduce the spatial generalized Stewart platform
(GSP) consisting of two rigid bodies connected with six distance and/or angular
constraints between six pairs of points, lines and/or planes on the base and the
moving platform respectively, which could be considered as the most general
form of parallel manipulators with six DOFs in certain sense. We prove that
there exist 3850 possible forms of GSPs which could provide more practical six
DOFs parallel manipulators. The original Stewart platform is one of the GSPs
in [6], where the six constraints are distance constraints between points.

While a majority of the work on Stewart platform focuses on the spatial case,
several people also considered the planar Stewart platform which consists a mov-
ing platform and a base connected with three extensible legs. In [21], Pennock
and Kanssner proved that the the upper bound of the number of solutions for
the direct kinematics of the planar Stewart platform is six. Gosselin and Merlet
developed robust solving schemes and established sharper bounds for special pla-
nar Stewart platforms [9]. Other interesting work on the planar Stewart platform
could be found in [1, 3, 16, 17].

In this paper, we introduce the planar generalized Stewart platform which
could be considered as the most general form of planar parallel manipulators
with three DOFs in certain sense. A planar GSP consists of a base and a moving
platform connected with three distance or/and angular constraints between three
pairs of points and/or lines on the base and platform respectively. We show that
there exist sixteen forms of planar GSPs. The planar Stewart platform considered
in previous work such as [21, 9] is a planar GSP where the three constraints are
three distance constraints among three pairs of points.

The direct kinematics is to solve an algebraic equation system. The character-
istic set method is a convenient and powerful tool to deal with such equations[25].
Using the characteristic set method, we could reduce the solving of an equation
system into the solving of equations in triangular form and hence the solving
of univariate equations. It should be noticed that these univariate polynomial
equations are in “cascade” form, that is, the coefficients of an equation involve
the roots of the previous equations. These equations in triangular form are called
closed-form solutions in this paper. We show that closed-form solutions to the
direct kinematics of all planar GSPs could be found with the characteristic set
method [25]. With these closed-form solutions, upper bounds for the number of
solutions of the direct kinematics in the general cases can also be given. For a
class of GSPs involving an angular constraint, we provide a solution to the direct
kinematics based on ruler and compass constructions.

The rest of the paper is organized as follows. In Section 2, we define the
planar GSP. In Section 3, we give the solutions to direct kinematics for the
planar GSPs. In Section 4, conclusions are given. The results presented in this
paper were reported in the un-published technical report [8].
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2 Geometric Constraint Solving and Generalized Stewart
Platform

In this section, we will introduce the generalized Stewart platform as a special
class of geometric constraint problems.

2.1 A General Method of Geometric Constraint Solving

We consider two types of geometric primitives: points and lines in the two di-
mensional Euclidean plane and two types of geometric constraints: the distance
constraint between point/point, point/line and the angular constraint between
line/line. A geometric constraint problem is to find all the possible solutions of
a set of geometric primitives satisfying a set of geometric constraints.

In [7], we proposed a geometric constraint solving method. As shown in Fig-
ure 1, to solve a geometric constraint problem, we first use the C-tree decompo-
sition algorithm to reduce the problem to general construction sequences, and
then reduce the solving of general construction sequences to the solving of basic
merge patterns, which are the smallest problems we have to solve in order to
solve the original problem.

Let B and U be two sets of geometric primitives. A basic merging pattern
is to determine the position of U assuming that the position of B are known
and there exists a set of geometric constraints among geometric primitives in B
and U . We further assume that a basic merge pattern (B,U) has the following
properties.

1. B and B ∪ U are rigid bodies. Here, by a rigid body, we mean a structurally
well-constrained problem [7].

2. There is no subset V of U such that B ∪ V is a rigid body.

As shown in Figure 1, there are three classes of basic merge patterns. The type
of explicit constructions means to construct one geometric primitive, that is, U

Geometric Constraint Problem

General Construction Sequence

C-tree Decomposition

Basic Merge Patterns

Explicit Construction GSP General Type

Fig. 1. Solving a constraint problem
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consists of one geometric primitive. Explicit constructions are generally easy to
solve. The next easy case is the general Stewart platform (GSP), where both
B and U are rigid bodies and the problem is to determine the relative position
of two rigid bodies according to three constraints. In the general case, U is not
a rigid body and we need to determine the position of U using the constraints
between primitives in B and U and constraints between primitives inside U . In
this paper, we will give closed-form solutions to the 2D GSPs.

2.2 Planar Generalized Stewart Platform

A rigid body in the plane has three DOFs. Therefore, to determine its position
and orientation, we need three geometric constraints. This leads to the following
definition.

Definition 1. A planar generalized Stewart platform consists of two rigid bod-
ies connected with three geometric constraints. One of the rigid bodies called
base is fixed and the other rigid body called platform is movable. The posi-
tion and orientation of the platform are determined by the values of the three
constraints.

Fig. 2. Planar GSP

The planar GSP can be divided into two classes:

DDA. The GSP has two distance and one angular constraints.
DDD. The GSP has three distance constraints.

We cannot have more than one angular constraints due to the fact that a rigid
body in the plane has one rotational DOF and the rotational DOF can generally
be determined by one angular constraint.

Proposition 1. If we assume that the geometric primitives in the base and
platform are distinct, there are 6 types of DDA planar GSPs and 10 types of
DDD planar GSPs. Totally, there are 16 types of planar GSPs.

Proof. Let di(ai) be the number of possible ways to assign i distance(angular)
constraints between the platform and the base. There is one type of angular
constraint: line/line. For the point/line constraint, we need to consider two cases:
line/point and point/line meaning that the line is on the platform and the base
respectively. So we need only to consider three types of distance constraints:
point/point, point/line and line/point.
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The number of possible ways to select m objects from n types of objects is
Cm

m+n−1. Then the number of possible types of GSPs with j distance constraints
and i angular constraints is:

aidj = Ci
i+1−1 · C

j
j+3−1 = Ci

i · C
j
j+2 = Cj

j+2.

Then the number of DDA GSPs is: d2 = C2
2+2 = 6 and the number of DDD

GSPs is d3 = C3
3+2 = 10.

3 Closed-Form Solutions to the Direct Kinematics of
Planar GSPs

The direct kinematics of a GSP (B,U) is to find the position and direction of
U relative to B assuming that the position and direction of B is fixed and the
values for the three constraints between B and U are given.

3.1 The Characteristic Set Method

In what follows, we will use Ritt-Wu’s characteristic set method [25, 23] to find
the closed-form solutions of the direct kinematics of a GSP. Let V be a set of
parameters, xi, i = 1, . . . , p the variables to be determined, and PS = 0 a set of
polynomial equations in V and the xi. The method could be used to find a set
of equations in triangular form, that is, an equation system

CS =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1(V, x1) = I1(V )xd1
1 + R1(V, x1)

f2(V, x1, x2) = I2(V, x1)xd2
2 + R2(V, x1, x2)

...
fp(V, x1, . . . , xp) = Ip(V, x1, . . . , xp−1)x

dp
p + Rp(V, x1, . . . , xp)

(1)

where degxiRi(V, x1, . . . , xi) < di(i = 1, . . . , p). Variable xi is called the leading
variable of fi. Ii is called the initial of fi. For a set of values of the parameters V ,
we may solve xi with the univariate equation fp(V, x1, . . . , xi) = 0 recursively
under the condition Ii 	= 0. These univariate equations could be solved with
either numerical methods or symbolic methods such as methods of real root
isolation. It is clear that in order to solve a set of equations in triangular form,
we need only to solve univariate equations.

For a set of polynomials PS and a polynomial D, let Zero(PS /D) be the set
of solutions for all P ∈ PS which are not solutions of D = 0. With Ritt-Wu’s
characteristic set method, we may decompose the solution set Zero(PS ) as the
union of the zero sets of several triangular sets:

Zero(PS ) = ∪m
i=1Zero(Ai/Ji) (2)

where each Ai is a triangular set and Ji is the product of the initials of the
polynomials in Ai. In this paper, when we say that the closed-form solutions
of an equations system PS = 0 are given, we mean that we have reduced the
PS = 0 to the solutions of triangular sets.
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3.2 The DDA Planar GSPs

For planar DDA GSPs, we may solve the direct kinematic problem in two steps.
First, we impose an angular constraint to determine the rotational DOF of the
platform. Then we impose the distance constraints without breaking the angular
constraint imposed previously. In this way, we generate a solution to the direct
kinematic problem based on the ruler and compass construction.

1. Imposing Angular Constraint
Let B and U be the base and the platform of the GSP. After an angular constraint
is imposed between B and U , we need only to find a rotational matrix R such that
RU satisfies the angular constraint. We need only to consider angular constraints
between two unit vectors on B and U respectively. Let s1 be a unit vector on
the base and s2 a unit vector on the platform. Without loss of generality, we
may further assume that s1 = s2. Let R = (rij)2×2 be the rotational matrix.
The angular constraint is imposed as follows. We assume that the platform is
at some known place at the beginning. After imposing the angular constraint,
the platform moves to the correct position by a rotation represented by the
rotational matrix R. So the angular constraint can be represented by

cos(� (s1,Rs2)) = d.

Let s2 = s1 = (l1, m1) where l21 + m2
1 = 1. We can obtain the following equation

system: ⎧⎪⎪⎨
⎪⎪⎩

RTR = I
det(R) = 1
s1 · Rs2 = d
l21 + m2

1 = 1

(3)

Applying Ritt-Wu’s characteristic set method [24, 25] to equations (3) under the
variable order r11 > r22 > r12 > r21 > d > l1 > m1, we have

Zero((3)) = Zero(CS)

where CS is given below.

CS =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

l21 + m2
1 = 1

r21
2 − 1 + d2 = 0

r12 + r21 = 0
r22 − r11 = 0
r11 − d = 0.

(4)

Proposition 2. After imposing an angular constraint, the number of real so-
lutions for the direction of the platform is at most two and this bound can be
reached. Furthermore, the equations CS in triangular form provide closed-form
solutions to the problem.
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Proof. Since equation system (4) consists of one quadratic equation and three
linear equations in the variables ri,j , the direct kinematics problem has at most
two solutions. Furthermore, the problem has two real solutions if and only if
1 − d2 > 0 which is possible since d = cos(� (s1,Rs2)).

2. Imposing Distance Constraints
As mentioned in Section 2, there exist three kinds of distance constraints:

DPP: the distance constraint between two points,
DLP: the distance constraint between a line on the platform and a point on

the base, and
DPL: the distance constraint between a point on the platform and a line on

the base.

Definition 2. For each distance constraint, say C =DPL, the locus of the cor-
responding geometric element e on the platform under the angular constraint
and this distance constraint is called the locus induced by this constraint, and is
denoted by LC or LDPL.

Proposition 3. Let D be a distance constraint between a geometric element
e on the platform and a geometric element on the base. If the direction of
the platform is fixed, then the locus of e, that is LD, could be a circle or two
lines.

Proof. We use DIS(e1, e2) to denote the distance between a geometric element
e1 on the platform and a geometric element e2 on the base. The loci induced by
the three distance constraints can be determined as follows.

LDPP . For constraint DIS(p1, p2) = d, the locus of point p1 is a circle with center
p2 and radius d.
LDLP . For constraint DIS(l, p) = d, if we only consider the distance constraint,
then line l could be all the tangent lines of a circle with center p and radius d. If
we further assume that the direction of line l is fixed, then the locus of l is two
lines l1 and l2 which are parallel to the line l and with distance d to p.
LDPL. For constraint DIS(p, l) = d, the locus of point p is two lines l1 and l2
which are parallel to the line l and with distance d to l.

In Figure 3, the circle in diagram (a) is the locus of DPP; the bold line l
tangent to the circle in diagram (b) represents the line on the platform and the
lines l1 coincident to l and l2 parallel to l is the locus of DLP; and two thin
lines parallel to line l in diagram (c) is the locus of DPL.

Proposition 4. Let D be a distance constraint between a geometric element e
on the platform and a geometric element on the base. If the direction of the
platform is fixed, then the locus of any given point on e is LD.

Proof. If e is a point, D must be either DPP or DPL. In this case, the statement
is obviously valid. Otherwise, e is a line. From the above discussion, we know
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(b) (c)(a)

P

d

l

l 1

l 2

P

l 2

d

l 1
d

P2 P1

d

Fig. 3. Loci of distance constraints

that the collection of points on e is LD. Hence LD could be considered as the
locus for a given point on e.

After the angular constraint is imposed, the direction of the platform is fixed.
To find the position of the platform, we need only to find the position of a point
on the platform.

Algorithm 1. The input includes two distance constraints Di, i = 1, 2 between
geometric elements on the platform and the base. We further assume that the
directions of the platform and hence the directions of the lines on the platform
are fixed. The output is a new position for the platform such that the two distance
constraints are satisfied.

1. Determine the equations Ei(x, y) = 0, i = 1, 2 for the loci LDi as shown in
Proposition 3.

2. Let Di be a constraint between a geometric element ei on the platform and
fi on the base. If ei is a point, let pi = ei. Otherwise ei is a line. Select an
arbitrary fixed point on ei as pi. Let pi = (xi, yi).

3. By Proposition 4, after imposing the distance constraint Di, point pi is on
the locus LDi . Furthermore, since the direction of the platform is fixed, when
imposing the constraint D2, point p1 must also be on the locus L′

2 which is
the translation of LD2 at the direction p1 − p2. Then after imposing the two
distance constraints, the new position p′1 for point p1 must be the intersection
of two equations:

E1(x, y) = 0,
E2(x − x1 + x2, y − y1 + y2) = 0. (5)

4. By Proposition 3, (5) are equations for lines or circles. Then we need only
to find the intersections of pairs of lines and circles, which are very easy to
be solved. We generally could have two or four solutions.

5. Move the platform along the translation vector t = p′1 − p1, it will satisfy
the two distance constraints.

So for the DDA case, we have the following conclusions.
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1. To impose the angular constraint, we usually have two solutions.
2. To impose the two distance constraints, the problem is reduced to the in-

tersection of a pair of lines/a circle which has four real solutions; a pair of
lines/a pair of lines which has four real solutions; circle/circle which has two
real solutions.

As a consequence, we have proved the following result.

Theorem 2. We generally could have four or eight real solutions for a DDA
problem depending on the types of the constraints imposed on it. Furthermore,
these solutions can be obtained by rotating the platform and taking intersections
between line/line, line/circle, or circle/circle.

(a)
(b) (c)

P4

P3

P1

P2

L1

L2

L3

L4

P4

P3P2

P1

P1

P4 P1

P4

P3P2

P1
P4

C1

C2

C3

C 1

C2

C3

Fig. 4. A DDA geometric constraint problem and its geometric solution

Note that the solution given above is pure geometric. Let us illustrate this with
the example in Figure 4. We may consider this as a DDA GSP by considering
p1p4l4 as the platform and p2p3l2 as the base. We may solve this problem as
follows.

1. Rotate line p1p4 so that the angle between line p1p4 and line p2p3 is the
given angle.

2. Let c1 be the circle with p2 as center and |p2p1| as the radius, c2 the circle
with p3 as center and |p3p4| as the radius, and c3 the translation of c1 along
vector p4 − p1. The correct position for p4 is the intersection of c2 and c3.
Denote this intersection as p′4.

3. The position for p′1 is p′4 + p1 − p4. The problem could have either one or
two solutions as shown in (c) and (b) of Figure 4.

3.3 The DDD GSPs

A problem is called ruler and compass constructible, or RC-constructible, if the
coordinates of its geometric elements can be found by solving univariate linear
or quadratic equations.
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Theorem 3. As mentioned in section 3.2, there exist three kinds of distance
constraints: DPP, DLP and DPL. The DDD GSPs can be divided into ten
different sub-cases shown below. We use a new notation to represent these ten
cases. For instance, PPP-LLL represents the GSP where the three distance
constraints are between three points on the platform and three lines on the base
respectively.

1. Direct kinematics for PPP-LLL and LLL-PPP can be reduced to the solv-
ing of one quadratic and three linear equations in the general case. Hence
these GSPs are RC-constructible. Considering the fact that the distance con-
straint between a point and a line has two forms (|pl| = ±d), each of PPP-
LLL and LLL-PPP has at most 8 solutions.

2. Direct kinematics for PPP-LLP, LLP-PPP, LPP-PLL and LLP-PPL
can be reduced to the solving of one quartic and three linear equations in
the general case. We use the method in [5] to decide that the problems are
not RC-constructible. Each of PPP-LLP and LLP-PPP has at most 16
solutions. Each of LPP-PLL and LLP-PPL has at most 32 solutions.

3. Direct kinematics for PPP-LPP, LPP-PPP, LPP-PLP and PPP-PPP
can be reduced to the solving of one equation of degree six and three linear
equations in the general case. The polynomials of degree six in these cases are
irreducible. Then it is obvious that the problems are not RC-constructible.
Each of PPP-LPP and LPP-PPP has at most 12 solutions. LPP-PLP
has at most 24 solutions and PPP-PPP has at most six solutions.

Proof. Let us consider the case LPP-PLP, which is to impose three distance
constrains: DPP, DPL and DLP simultaneously. It is obvious that we can al-
ways get three non collinear points on the base and on the platform, respectively.
If the primitive involved is a line, we can take a point on it.

Let the three points on the base be B1, B2 and B3. Assuming that B1 is the
origin of the fixed coordinate system on the base, B1B2 the x-axis. The coordi-
nates of three points on the base are B1 = (0, 0), B2 = (b1, 0) and B3 = (b2, b3).
Let the three points on the platform be D1, D2 and D3. Assuming that point p
is the origin of the moving coordinate system on the platform. The coordinate
of point p in the fixed coordinate system is p = (x3, x4), and point p is the foot
of perpendicular line from point D3 to line D1D2. Let � (B1B2, D1D2) = θ,
x1 = cos θ, x2 = sin θ. The moving coordinates of the three points on the
platform are D1 = (−h1, 0), D2 = (h2, 0), D3 = (0, h3), where h1, h2, h3 are
three nonnegative parameters. D1D2 is the x-axis of the moving coordinate sys-
tem. The coordinates of D1, D2, D3 in the fixed coordinate system are D11 =
(−h1x1+x3,−h1x2+x4), D22 = (h2x1+x3, h2x2+x4) and D33 = (−h3x2+x3, h3
x1 + x4).

Let the parametric equation of the line l on the base be p = B3 +u1s1, where
s1 = (l1, m1) and |s1| = 1. Let the parametric equation of line l0 on the platform
in the moving coordinate system be P = D2 + u2s2 where s2 = (l2, m2) and
|s2| = 1. Then the parametric equation of line l0 in the fixed coordinate system
is p = D22 + u2s22, where |s22| = 1 and s22 = (l2x1 − m2x2, l2x2 + m2x1).
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Let the three constraints be |B1D11| = t, |B2l0| = t1 and |D33l| = t2, we have

x2
1 + x2

2 − 1 = 0
(−h1x1 + x3)2 + (−h1x2 + x4)2 − t2 = 0
(l2x2 + m2x1)(h2x1 + x3 − b1) − (l2x1 − m2x2)(h2x2 + x4) − d1 = 0
m1(−h3x2 + x3 − b2) − l1(h3x1 + x4 − b3) − d2 = 0

(6)

where d1 = ±t1 and d2 = ±t2.
Equation system (6) can be reduced to the following triangular form with

Ritt-Wu’s characteristic set method under the variable order x1 < x2 < x3 < x4.

z41x1
6 + z42x

5
1 + z43x

4
1 + z44x

3
1 + z45x

2
1 + z46x1 + z47 = 0

(z31x
2
1 + z32x1 + z33)x2 + z34x

3
1 + z35x

2
1 + z36x1 + z37 = 0

((−m1m2 − l1l2)x2 + (−l1m2 + m1l2)x1)x3 + m1h3x
2
2m2 + ((−m1h3l2

+l1h3m2)x1 + l1l2b1 − l1b3m2 − d2m2 + m1b2m2)x2 − l1h3x
2
1l2 + (d2l2

+l1b1m2 − m1b2l2 + l1b3l2)x1 − l1m2h2 − l1d1 = 0
−l1x4 − m1h3x2 + m1x3 − l1h3x1 − m1b2 + l1b3 + d2 = 0

(7)

where zij are the polynomials in the parameters li, mj , and hk, which may
be found in the technical report [8]. The equations in (7) give the solution to
the GSP in the generic case and hence the platform has at most six solutions.
Considering the fact that d1 = ±t1 and d2 = ±t2, the problem could have twenty
four solutions. For the other nine planar DDD GSPs, the proofs are quite similar.
Details could be found in the technical report [8].

Example 1. The problem in Figure 5 can be reduced into merging two rigid bod-
ies p1p2p3p4 and p5p6p7p8. We take p5p6p7p8 as the the base object and p1p2p3p4
the dependent object. The constraints are |l1p4| = 0, |l2p3| = 0 and |p5l3| = 0,
which is an LPP-PLL GSP. Let p7 = (0, 0). The parametric equations for lines
l1, l2 are p = (0, 0) + u1(0, 1) and p = (0, 0) + u2(1, 0). Let point p3 be the
origin of the moving coordinate system. Then p3 = (x3, x4). Let |p6p7| = b2,
|p5p6| = b3 and |p3p4| = h3. Thus the coordinates for points p4 and p5 are

P8

P7 P6

P5

P4

P3

P1

P2

l 7

l 4

l 3

l 2

l 1

l 5

l 6

Fig. 5. An example of planar DDD GSP
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p4 = (−x2h3 + x3, x1h3 + x4) and p5 = (b2, b3). The parametric equation of line
l3 is p = (x3, x4) + u3(x1, x2). The equation system is⎧⎪⎪⎨

⎪⎪⎩
x2

1 + x2
2 − 1 = 0

|x2(b2 − x3) − x1(b3 − x4)| = 0
| − h3x2 + x3| = 0
|x4| = 0

(8)

Applying Ritt-Wu’s characteristic set method to equation system (8) under the
variable order x3 > x2 > x1 > b2 > b3 > h3, we obtain the following decompo-
sition:

Zero((8)) = ∪6
i=1Zero(CSi/Ji)

where CSi and Ji are given below.

CS1 = [b2x3+h2
3x1

2−x1b3h3−h2
3, b2x2+h3x1

2−x1b3−h3, h
2
3x1

4−2b3h3x1
3 +

(b2
2 + b2

3 − 2h2
3)x1

2 + 2x1b3h3 + h2
3 − b2

2], J1 = b2h3.
CS2 = [x3,−x2b2 + x1b3, b

2
2x1

2 − b2
2 + x1

2b2
3, h3],J2 = b2.

CS3 = [x3,x2 − 1,x1, b2, h3], J3 = 1.
CS4 = [x3,x2 + 1,x1, b2, h3],J4 = 1.
CS5 = [x3,x1

2 + x2
2 − 1, b2, b3, h3], J5 = 1.

CS6 = [h3x2 − x3, h3x2
2 + x1b3, h3x1

2 − x1b3 − h3, b2], J6 = h3.

With the above zero decomposition, the solutions of (8) are reduced to the
solutions of CSi = 0, i = 1, . . . , 6.

From the structure of these triangular sets, we could solve equation (8) as
follows.

1. If h3 	= 0, b2 	= 0, we will use CS1 = 0 to find the solutions.
2. If h3 	= 0, b2 = 0, we will use CS6 = 0 to find the solutions.
3. If h3 = 0, b2 = 0, b3 = 0, we will use CS5 = 0 to find the solutions.
4. If h3 = 0, b2 = 0, b3 	= 0, we will use CS3 = 0, CS4 = 0 to find the solutions.
5. If h3 = 0, b2 	= 0, we will use CS2 = 0 to find the solutions.

If we take b2 = 1
2 , b3 = 0 and h3 = 1, we obtain four real solutions from

CS1 = 0, which are (
√

3
2 , 0, 0, 0), (−

√
3

2 , 0, 0, 0), (1, 0, 0, 0) and (−1, 0, 0, 0). So the
problem has four real solutions at most.

4 Conclusions

A generalization of the planar Stewart platform is introduced by considering all
possible geometric constraints between three pairs of geometric primitives on
the base and the platform respectively. This gives 16 types of planar GSPs. The
purpose of introducing these new types of planar Stewart platforms is to find
new and better parallel mechanisms. We give closed-form solutions to the direct
kinematics of these GSPs. For the six GSPs with two distance constraints and
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one angular constraint, we are able to give a pure geometric solution based on
ruler and compass constructions.

Acknowledgment. We want to thank the anonymous referees for valuable sug-
gestions.
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20. J.C. Owen. Algebraic Solution for Geometry from Dimensional Constraints. In
ACM Symp., Foundation of Solid Modeling, 397-407, ACM Press, New York, 1991.

21. G.R. Pennock and D.J. Kassner. Kinematic Analysis of a Planar Eightbar Linkage:
Application to a Platform-type Robot. Trans. ASME, J. Mech. Des., 114(1), 87-95,
1992.

22. D. Stewart. A Platform with Six Degrees of Freedom. Proc. Inst. of Mech. Eng.,
London, 180(1), 371-386, 1965.

23. D. Wang. Elimination Methods. Springer-Verlag, Wien, New York, 2001.
24. D.K. Wang. Wsolve, http://www.mmrc.iss.ac.cn/˜ dwang/wsolve.
25. W.T. Wu. Mechanical Theorem Proving in Geometries: Basic Principles. Springer-

Verlag, Wien, New York, 1994.



Author Index

Botana, Francisco 92
Buchberger, Bruno 19

Chen, Xuefeng 34
Chibisov, Dmytro 156

Denner-Broser, Britta 111

Fleuriot, Jacques D. 1

Gao, Xiao-Shan 198

Ida, Tetsuo 19

Li, Hongbo 169
Li, Peng 34
Liang, Tielin 130
Lichtblau, Daniel 70
Lin, Long 34

Mayr, Ernst W. 156
Meikle, Laura I. 1

Pankratov, Sergey 156
Pech, Pavel 44

Recio, Tomás 92
Robu, Judit 19

Takahashi, Hidekazu 19
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